Időállapot: közlönyállapot (1999.X.30.)

1999. évi XC. törvény - a Magyarország és a Nemzetközi Atomenergia Ügynökség között a nukleáris fegyverek elterjedésének megakadályozásáról szóló szerződésnek megfelelő biztosítékok alkalmazására 1972. március 6-án kötött egyezményhez kapcsolódó, Bécsben, 1998. november 26-án aláírt Kiegészítő Jegyzőkönyv megerősítéséről és kihirdetéséről 2/3. oldal

Especially designed or prepared radio frequency ion excitation coils for frequencies of more than 100 kHz and capable of handling more than 40 kW mean power.

5.8.3. Uranium plasma generation systems

Especially designed or prepared systems for the generation of uranium plasma, which may contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.

5.8.4. Liquid uranium metal handling systems

Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.

Explanatory note

The crucibles and other parts of this system that come into contact with molten uranium or uranium alloys are made of or protected by materials of suitable corrosion and heat resistance. Suitable materials include tantalum, yttria-coated graphite, graphite coated with other rare earth oxides or mixtures thereof.

5.8.5. Uranium metal ’product’ and ’tails’ collector assemblies

Especially designed or prepared ’product’ and ’tails’ collector assemblies for uranium metal in solid form. These collector assemblies are made of or protected by materials resistant to the heat and corrosion of uranium metal vapor, such as yttria-coated graphite or tantalum.

5.8.6. Separator module housings

Cylindrical vessels especially designed or prepared for use in plasma separation enrichment plants for containing the uranium plasma source, radio-frequency drive coil and the ’product’ and ’tails’ collectors.

Explanatory note

These housings have a multiplicity of ports for electrical feed-throughs, diffusion pump connections and instrumentation diagnostics and monitoring. They have provisions for opening and closure to allow for refurbishment of internal components and are constructed of a suitable non-magnetic material such as stainless steel.

5.9. Especially designed or prepared systems, equipment and components for use in electromagnetic enrichment plants

Introductory note

In the electromagnetic process, uranium metal ions produced by ionization of a salt feed material (typically UCl4) are accelerated and passed through a magnetic field that has the effect of causing the ions of different isotopes to follow different paths. The major components of an electromagnetic isotope separator include: a magnetic field for ion-beam diversion/separation of the isotopes, an ion source with its acceleration system, and a collection system for the separated ions. Auxiliary systems for the process include the magnet power supply system, the ion source high-voltage power supply system, the vacuum system, and extensive chemical handling systems for recovery of product and cleaning/recycling of components.

5.9.1 Electromagnetic isotope separators

Electromagnetic isotope separators especially designed or prepared for the separation of uranium isotopes, and equipment and components therefor, including:

(a) Ion sources

Especially designed or prepared single or multiple uranium ion sources consisting of a vapor source, ionizer, and beam accelerator, constructed of suitable materials such as graphite, stainless steel, or copper, and capable of providing a total ion beam current of 50 mA or greater.

(b) Ion collectors

Collector plates consisting of two or more slits and pockets especially designed or prepared for collection of enriched and depleted uranium ion beams and constructed of suitable materials such as graphite or stainless steel.

(c) Vacuum housings

Especially designed or prepared vacuum housings for uranium electromagnetic separators, constructed of suitable non-magnetic materials such as stainless steel and designed for operation at pressures of 0.1 Pa or lower.

Explanatory note

The housings are specially designed to contain the ion sources, collector plates and water-cooled liners and have provision for diffusion pump connections and opening and closure for removal and reinstallation of these components.

(d) Magnet pole pieces

Especially designed or prepared magnet pole pieces having a diameter greater than 2 m used to maintain a constant magnetic field within an electromagnetic isotope separator and to transfer the magnetic field between adjoining separators.

5.9.2. High voltage power supplies

Especially designed or prepared high-voltage power supplies for ion sources, having all of the following characteristics: capable of continuous operation,output voltage of 20,000 V or greater, output current of 1 A or greater, and voltage regulation of better than 0.01% over a time period of 8 hours.

5.9.3. Magnet power supplies

Especially designed or prepared high-power, direct current magnet power supplies having all of the following characteristics: capable of continuously producing a current output of 500 A or greater at a voltage of 100 V or greater and with a current or voltage regulation better than 0.01% over a period of 8 hours.

6. Plants for the production of heavy water, deuterium and deuterium compounds and equipment especially designed or prepared therefor

Introductory note

Heavy water can be produced by a variety of processes. However, the two processes that have proven to be commercially viable are the water-hydrogen sulphide exchange process (GS process) and the ammonia-hydrogen exchange process.

The GS process is based upon the exchange of hydrogen and deuterium between water and hydrogen sulphide within a series of towers which are operated with the top section cold and the bottom section hot. Water flows down the towers while the hydrogen sulphide gas circulates from the bottom to the top of the towers. A series of perforated trays are used to promote mixing between the gas and the water. Deuterium migrates to the water at low temperatures and to the hydrogen sulphide at high temperatures. Gas or water, enriched in deuterium, is removed from the first stage towers at the junction of the hot and cold sections and the process is repeated in subsequent stage towers. The product of the last stage, water enriched up to 30% in deuterium, is sent to a distillation unit to produce reactor grade heavy water, i.e., 99.75% deuterium oxide.

The ammonia-hydrogen exchange process can extract deuterium from synthesis gas through contact with liquid ammonia in the presence of a catalyst. The synthesis gas is fed into exchange towers and to an ammonia converter. Inside the towers the gas flows from the bottom to the top while the liquid ammonia flows from the top to the bottom. The deuterium is stripped from the hydrogen in the synthesis gas and concentrated in the ammonia. The ammonia then flows into an ammonia cracker at the bottom of the tower while the gas flows into an ammonia converter at the top. Further enrichment takes place in subsequent stages and reactor grade heavy water is produced through final distillation. The synthesis gas feed can be provided by an ammonia plant that, in turn, can be constructed in association with a heavy water ammonia-hydrogen exchange plant. The ammonia-hydrogen exchange process can also use ordinary water as a feed source of deuterium.

Many of the key equipment items for heavy water production plants using GS or the ammonia-hydrogen exchange processes are common to several segments of the chemical and petroleum industries. This is particularly so for small plants using the GS process. However, few of the items are available „off-the-shelf”. The GS and ammonia-hydrogen processes require the handling of large quantities of flammable, corrosive and toxic fluids at elevated pressures. Accordingly, in establishing the design and operating standards for plants and equipment using these processes, careful attention to the materials selection and specifications is required to ensure long service life with high safety and reliability factors. The choice of scale is primarily a function of economics and need. Thus, most of the equipment items would be prepared according to the requirements of the customer.

Finally, it should be noted that, in both the GS and the ammonia-hydrogen exchange processes, items of equipment which individually are not especially designed or prepared for heavy water production can be assembled into systems which are especially designed or prepared for producing heavy water. The catalyst production system used in the ammonia-hydrogen exchange process and water distillation systems used for the final concentration of heavy water to reactor-grade in either process are examples of such systems.

The items of equipment which are especially designed or prepared for the production of heavy water utilizing either the water-hydrogen sulphide exchange process or the ammonia-hydrogen exchange process include the following:

6.1. Water - Hydrogen Sulphide Exchange Towers

Exchange towers fabricated from fine carbon steel (such as ASTM A516) with diameters of 6 m (20 ft) to 9 m (30 ft), capable of operating at pressures greater than or equal to 2 MPa (300 psi) and with a corrosion allowance of 6 mm or greater, especially designed or prepared for heavy water production utilizing the water-hydrogen sulphide exchange process.

6.2. Blowers and Compressors

Single stage, low head (i.e. 0.2 MPa or 30 psi) centrifugal blowers or compressors for hydrogen-sulphide gas circulation (i.e., gas containing more than 70% H2S) especially designed or prepared for heavy water production utilizing the water-hydrogen sulphide exchange process. These blowers or compressors have a throughput capacity greater than or equal to 56 m3/second (120,000 SCFM) while operating at pressures greater than or equal to 1.8 MPa (260 psi) suction and have seals designed for wet H2S service.

6.3. Ammonia-Hydrogen Exchange Towers

Ammonia-hydrogen exchange towers greater than or equal to 35 m (114.3 ft) in height with diameters of 1.5 m (4.9 ft) to 2.5 m (8.2 ft) capable of operating at pressures greater than 15 MPa (2225 psi) especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process. These towers also have at least one flanged axial opening of the same diameter as the cylindrical part through which the tower internals can be inserted or withdrawn.

6.4. Tower Internals and Stage Pumps

Tower internals and stage pumps especially designed or prepared for towers for heavy water production utilizing the ammonia-hydrogen exchange process. Tower internals include especially designed stage contactors which promote intimate gas/liquid contact. Stage pumps include especially designed submersible pumps for circulation of liquid ammonia within a contacting stage internal to the stage towers.

6.5. Ammonia Crackers

Ammonia crackers with operating pressures greater than or equal to 3 MPa (450 psi) especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

6.6. Infrared Absorption Analyzers

Infrared absorption analyzers capable of „on-line” hydrogen/deuterium ratio analysis where deuterium concentrations are equal to or greater than 90%.

6.7. Catalytic Burners

Catalytic burners for the conversion of enriched deuterium gas into heavy water especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

7. Plants for the conversion of uranium and equipment especially designed or prepared therefor

Introductory note

Uranium conversion plants and systems may perform one or more transformations from one uranium chemical species to another, including: conversion of uranium ore concentrates to UO3, conversion of UO3 to UO2, conversion of uranium oxides to UF4 or UF6, conversion of UF4 to UF6, conversion of UF6 to UF4, conversion of UF4 to uranium metal, and conversion of uranium fluorides to UO2. Many of the key equipment items for uranium conversion plants are common to several segments of the chemical process industry. For example, the types of equipment employed in these processes may include: furnaces, rotary kilns, fluidized bed reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. However, few of the items are available ”off-the-shelf„; most would be prepared according to the requirements and specifications of the customer. In some instances, special design and construction considerations are required to address the corrosive properties of some of the chemicals handled (HF, F2, ClF3, and uranium fluorides). Finally, it should be noted that, in all of the uranium conversion processes, items of equipment which individually are not especially designed or prepared for uranium conversion can be assembled into systems which are especially designed or prepared for use in uranium conversion.

7.1. Especially designed or prepared systems for the conversion of uranium ore concentrates to UO3

Explanatory note

Conversion of uranium ore concentrates to UO3 can be performed by first dissolving the ore in nitric acid and extracting purified uranyl nitrate using a solvent such as tributyl phosphate. Next, the uranyl nitrate is converted to UO3 either by concentration and denitration or by neutralization with gaseous ammonia to produce ammonium diuranate with subsequent filtering, drying, and calcining.

7.2. Especially designed or prepared systems for the conversion of UO3 to UF6

Explanatory note

Conversion of UO3 to UF6 can be performed directly by fluorination. The process requires a source of fluorine gas or chlorine trifluoride.

7.3. Especially designed or prepared systems for the conversion of UO3 to UO2

Explanatory note

Conversion of UO3 to UO2 can be performed through reduction of UO3 with cracked ammonia gas or hydrogen.

7.4. Especially designed or prepared systems for the conversion of UO2 to UF4

Explanatory note

Conversion of UO2 to UF4 can be performed by reacting UO2 with hydrogen fluoride gas (HF) at 300-500 °C.

7.5. Especially designed or prepared systems for the conversion of UF4 to UF6

Explanatory note

Conversion of UF4 to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from the hot effluent gases by passing the effluent stream through a cold trap cooled to -10 °C. The process requires a source of fluorine gas.

7.6. Especially designed or prepared systems for the conversion of UF4 to U metal

Explanatory note

Conversion of UF4 to U metal is performed by reduction with magnesium (large batches) or calcium (small batches). The reaction is carried out at temperatures above the melting point of uranium (1130 °C).

7.7. Especially designed or prepared systems for the conversion of UF6 to UO2

Explanatory note

Conversion of UF6 to UO2 can be performed by one of three processes. In the first, UF6 is reduced and hydrolyzed to UO2 using hydrogen and steam. In the second, UF6 is hydrolyzed by solution in water, ammonia is added to precipitate ammonium diuranate, and the diuranate is reduced to UO2 with hydrogen at 820 °C. In the third process, gaseous UF6, CO2, and NH3 are combined in water, precipitating ammonium uranyl carbonate. The ammonium uranyl carbonate is combined with steam and hydrogen at 500-600 °C to yield UO2.

UF6 to UO2 conversion is often performed as the first stage of a fuel fabrication plant.

7.8. Especially designed or prepared systems for the conversion of UF6 to UF4

Explanatory note

Conversion of UF6 to UF4 is performed by reduction with hydrogen.

KIEGÉSZÍTŐ JEGYZŐKÖNYV A MAGYAR KÖZTÁRSASÁG ÉS A NEMZETKÖZI ATOMENERGIA ÜGYNÖKSÉG KÖZÖTT A BIZTOSÍTÉKOK ALKALMAZÁSÁRÓL KÖTÖTT EGYEZMÉNYHEZ

Tekintettel arra, hogy a Magyar Köztársaság (továbbiakban: Magyarország) részese a Magyarország és a Nemzetközi Atomenergia Ügynökség (továbbiakban: Ügynökség) közt fennálló, a nukleáris fegyverek elterjedésének megakadályozásáról szóló szerződés szerinti biztosítékok alkalmazásáról szóló egyezménynek, amely 1972. március 30-án lépett életbe;

annak tudatában, hogy a nukleáris fegyverek elterjedésének megakadályozását a Nemzetközi Közösség az Ügynökség biztosítéki rendszere eredményességének növelésével és hatékonyságának javításával kívánja támogatni;

figyelembe véve, hogy az Ügynökségnek a biztosítéki rendszer alkalmazása során szem előtt kell tartania azt az elvárást, hogy elkerülje Magyarország gazdasági és műszaki fejlődésének, valamint a békés nukleáris tevékenység terén folytatott nemzetközi együttműködésének akadályozását; továbbá, hogy tekintettel legyen az érvényben lévő egészségügyi, biztonsági, fizikai védelmi és egyéb biztonságvédelmi szabályokra valamint az egyének jogaira, és mindent megtegyen a kereskedelmi, műszaki és ipari titkok, valamint a tudomására jutott egyéb bizalmas információk védelmére;

miközben a Jegyzőkönyvben leírt tevékenységek gyakoriságát és mértékét az Ügynökség biztosítéki rendszere eredményességének növelése és hatékonysága javításának célkitűzésével összhangban lévő, legalacsonyabb szinten kell tartani;

ezért Magyarország és az Ügynökség a következőkben állapodnak meg:

A Jegyzőkönyv és a Biztosítéki Egyezmény kapcsolata

1. Cikk

A Biztosítéki Egyezmény rendelkezéseit olyan mértékben kell a Jegyzőkönyv vonatkozásában alkalmazni, amennyire azok kapcsolódnak és összhangban vannak a Jegyzőkönyv rendelkezéseivel. Amennyiben a Biztosítéki Egyezmény és a Jegyzőkönyv rendelkezései között eltérések mutatkoznak, a Jegyzőkönyv rendelkezéseit kell alkalmazni.

Információk szolgáltatása

2. Cikk

a. Magyarország a következő tartalmú jelentést adja az Ügynökség részére:

(i) Mindazon a nukleáris üzemanyagciklussal összefüggő, nukleáris anyagot nem alkalmazó, bárhol végzett kutatási és fejlesztési tevékenységek általános leírása, a helyszínek feltüntetésével, amelyeket Magyarország finanszíroz, amelyekre külön felhatalmazást adott vagy amelyeket ellenőriz, illetve amelyeket az általa kiadott megbízás alapján végeznek.

(ii) Az eredményesség és a hatékonyság várható növelésének céljából az Ügynökség által igényelt és Magyarország által jóváhagyott információk a biztosítékokkal kapcsolatos azon üzemeltetési tevékenységekről, amelyeket olyan létesítményekben és létesítményeken kívüli helyszíneken folytatnak, ahol rendszeresen alkalmaznak nukleáris anyagot.

(iii) Minden telephely minden épületének általános leírása, amely tartalmazza a rendeltetésüket és azok tartalmát, amennyiben az nem következik a leírásból. A leírásnak tartalmaznia kell a telephely térképét.

(iv) A Jegyzőkönyv I. Mellékletében felsorolt tevékenységek minden helyszíne esetében az adott tevékenység terjedelmének megadása.

(v) Információ az uránbányák és uránérc dúsító üzemek, valamint tórium dúsító üzemek helyszínéről, üzemi állapotáról és becsült éves termelési kapacitásáról; valamint azok Magyarország egész területére vonatkozó jelenlegi éves termelési adatairól. Az Ügynökség kérésére Magyarország adatokat szolgáltat az adott bánya vagy dúsító üzem mindenkori éves termeléséről. Ehhez az adatszolgáltatáshoz nem szükséges a nukleáris anyag részletes nyilvántartása.

(vi) Információ olyan alapüzemanyagokról, amelyek összetétele és tisztasági foka még nem alkalmas üzemanyag gyártására vagy izotópdúsításra, az alábbiak szerint:

(a) Ezen anyagok mennyisége, vegyi összetétele, folyó vagy tervezett felhasználása, akár nukleáris, akár nem-nukleáris célokra, minden olyan magyarországi helyszínre, ahol az anyag mennyisége urán esetén a 10 tonnát, és/vagy tórium esetén a 20 tonnát meghaladja. Ezen túlmenően olyan helyszínekre vonatkozóan, ahol az anyag mennyisége több, mint egy tonna, ha a magyarországi összes anyagmennyiség meghaladja a 10 tonna uránt vagy 20 tonna tóriumot. Ehhez az adatszolgáltatáshoz nem szükséges a nukleáris anyag részletes nyilvántartása;

(b) Az ilyen anyagot tartalmazó, Magyarországról exportált, minden nem-nukleáris célra szánt szállítmány mennyisége, kémiai összetétele, valamint rendeltetési helye, amennyiben az anyag mennyisége meghaladja a következő mennyiségeket:

(1) Tíz tonna urán, vagy ha Magyarországról ugyanabba az országba egymást követően többszöri exportra kerül sor, amelyek mennyisége egyenként nem éri el a tíz tonnát, de összességében egy éven belül meghaladja azt;

(2) Húsz tonna tórium, vagy ha Magyarországról ugyanabba az országba egymást követően többszöri exportra kerül sor, amelyek mennyisége egyenként nem éri el a húsz tonnát, de összességében egy éven belül meghaladja azt;

(c) Az ilyen anyagot tartalmazó, Magyarországra importált, minden nem-nukleáris célra szánt szállítmány mennyisége, kémiai összetétele, jelenlegi helyszíne és folyó vagy tervezett felhasználása, amennyiben az anyag mennyisége meghaladja a következő mennyiségeket:

(1) Tíz tonna urán, vagy ha Magyarországra egy éven belül egymást követően többszöri importra kerül sor, amelyek mennyisége egyenként nem éri el a tíz tonnát, de összességében egy éven belül meghaladja azt;

(2) Húsz tonna tórium, vagy ha Magyarországra egy éven belül egymást követően többszöri importra kerül sor, amelyek mennyisége egyenként nem éri el a húsz tonnát, de összességében egy éven belül meghaladja azt;

tudomásul véve, hogy nem szükséges az ilyen nem-nukleáris felhasználásra szánt anyagról információt szolgáltatni, amennyiben az már a nem-nukleáris végső felhasználási formájában van.

(vii) (a) Az INFCIRC/174 dokumentum 36. Cikkének értelmében a biztosítékok alól mentesített nukleáris anyag mennyiségeire, felhasználására és helyszínére vonatkozó adatok.

(b) Az INFCIRC/174 dokumentum 35. Cikk (b) pontja értelmében a biztosítékok alól mentesített olyan nukleáris anyagok mennyiségeire (ezek lehetnek becsült adatok is), felhasználására és helyszínére vonatkozó adatok, amelyek még nincsenek a nem-nukleáris rendeltetési formájukban és mennyiségük meghaladja az INFCIRC/174 dokumentum 36. Cikkében rögzített határértékeket. Ehhez az adatszolgáltatáshoz nem szükséges a nukleáris anyag részletes nyilvántartása.

(viii) A közepes vagy nagy aktivitású plutóniumot, magas dúsítású uránt vagy U-233-at tartalmazó hulladékok helyszínére vagy további feldolgozására vonatkozó adatok, amelyeket az INFCIRC/174 dokumentum 11. Cikkének értelmében kivontak a biztosítékok alól. E bekezdés tekintetében a „további feldolgozás” nem foglalja magában hulladékok átcsomagolását vagy olyan további kondicionálását tárolás vagy végső elhelyezés céljából, amennyiben az nem jelenti elemek szétválasztását.

(ix) Az alábbi adatok a II. Mellékletben felsorolt berendezésekről és nem-nukleáris anyagokról:

(a) A felsorolt berendezések, illetve anyagok Magyarországról történő minden exportja esetén az exportált tétel megnevezése, mennyisége, a tervezett felhasználás helye a fogadó országban, valamint az export dátuma, illetve tervezett dátuma;

(b) Amennyiben az Ügynökség külön kéri, az Ügynökségnek a fenti (a) bekezdésnek megfelelően más exportáló állam által szolgáltatott adatok megerősítése Magyarország mint importáló állam által.

(x) Magyarország illetékes hatóságai által jóváhagyott, a nukleáris üzemanyagciklus következő tíz éves fejlesztésére vonatkozó általános tervek, (beleértve a tervezett nukleáris üzemanyagciklussal összefüggő kutatási és fejlesztési tevékenységeket is).

b. Magyarország minden elvárható erőfeszítést megtesz annak érdekében, hogy az alábbi adatokat az Ügynökségnek átadhassa:

(i) A nukleáris üzemanyagciklussal összefüggő, nukleáris anyagokat nem alkalmazó kutatási és fejlesztési tevékenységek általános leírása a helyszínre vonatkozó adatok feltüntetésével, amely tevékenységek kifejezetten dúsítással, nukleáris üzemanyag reprocesszálással vagy plutóniumot, magas dúsítású uránt vagy U-233-at tartalmazó közepes vagy nagy aktivitású hulladékok feldolgozásával kapcsolatosak és Magyarországon bárhol, de nem Magyarország által finanszírozott, nem külön felhatalmazásával végzett vagy ellenőrzött, illetve nem annak megbízásából folytatott módon történnek. E bekezdés tekintetében a közepes vagy nagy aktivitású hulladékok „feldolgozása” nem foglalja magába a hulladékok átcsomagolását vagy kondicionálását tárolás vagy végső elhelyezés céljából, amennyiben az nem jelenti elemek szétválasztását.

(ii) Azoknak az Ügynökség által megadott telephelyeken kívüli helyszíneken folytatott tevékenységeknek az általános leírása és az azt végző személyek vagy szervezetek megnevezése, amelyeket az Ügynökség úgy ítél meg, hogy gyakorlati kapcsolatban állhatnak az adott telephelyen folytatott tevékenységgel. Ezen adatokat az Ügynökség külön kérése esetén kell szolgáltatni. Szolgáltatásuk az Ügynökséggel konzultálva, megfelelő időn belül történik.

c. Az Ügynökség kérésére Magyarország az e cikk alapján szolgáltatott adatokat kiegészíti vagy pontosítja, a biztosítéki célok eléréséhez szükséges mértékben.

3. Cikk

a. Magyarország a 2. Cikk a. bekezdés (i), (iii), (iv), (v), (vi) (a), (vii) és (x) pontjai szerinti és a 2. Cikk b. bekezdés (i) pontja szerinti adatokat a Jegyzőkönyv hatálybalépésétől számított 180 napon belül az Ügynökség rendelkezésére bocsátja.

b. Magyarország a fenti a. bekezdésben meghatározott az előző naptári évre vonatkozó adatokat minden év május 15-éig az Ügynökség rendelkezésére bocsátja. Amennyiben nincs változás az előzőleg szolgáltatott adatokhoz képest, akkor Magyarország ezt jelzi.

c. Magyarország a 2. Cikk a. bekezdés (vi) (b)-(c) pontjában meghatározott az előző naptári évre vonatkozó adatokat minden év május 15-ig az Ügynökség rendelkezésére bocsátja.

d. Magyarország a 2. Cikk a. bekezdés (ix) (a) pontjában meghatározott adatokat negyedévekre lebontva bocsátja az Ügynökség rendelkezésére. Ezen adatokat a negyedév végétől számított hatvan napon belül kell az Ügynökség rendelkezésére bocsátani.

e. Magyarország a 2. Cikk a. bekezdés (viii) pontjában meghatározott adatokat a tovább-feldolgozás előtt 180 nappal, valamint a helyszíneken az előző naptári évben bekövetkezett változásokat minden év május 15-ig az Ügynökség rendelkezésére bocsátja.

f. Magyarország és az Ügynökség megállapodnak a 2. Cikk a. bekezdés (ii) pontjában szereplő adatok szolgáltatásának idejéről és gyakoriságáról.

g. Magyarország a 2. Cikk a. bekezdés (ix) (b) pontjában meghatározott adatokat az Ügynökség erre vonatkozó kérésétől számított 60 napon belül az Ügynökség rendelkezésére bocsátja.

További hozzáférési lehetőség

4. Cikk

A Jegyzőkönyv 5. Cikke szerinti további hozzáférési lehetőséggel kapcsolatban a következő rendelkezéseket kell alkalmazni:

a. Az Ügynökség nem törekszik a 2. Cikkben meghatározott adatok mechanikus és tételes ellenőrzésére, de biztosítani kell számára a hozzáférést a következőkhöz:

(i) Az 5. Cikk a. bekezdés (i), illetve (ii) pontjaiban meghatározott bármely helyszínhez, kiválasztás alapján, annak bizonyítása céljából, hogy ott nem tárolnak be nem jelentett nukleáris anyagot és nem folytatnak be nem jelentett tevékenységet.

(ii) Az 5. Cikk b., illetve c. bekezdésében meghatározott bármely helyszínhez, a 2. Cikk alapján szolgáltatott információk helyességére és teljességére vonatkozó kérdések tisztázására, illetve az azokban található ellentmondások feloldása céljából.

(iii) Az 5. Cikk a. bekezdés (iii) pontjában meghatározott bármely helyszínhez, olyan mértékben, ami az Ügynökség számára ahhoz szükséges, hogy biztosítéki célból megerősítse a Magyarország által adott nyilatkozatot olyan létesítményeknek és létesítményeken kívüli helyszíneknek a leszereléséről, ahol nukleáris anyagot rendszeresen alkalmaztak.

b. (i) Az alábbi (ii) pontban felsoroltak kivételével, az Ügynökség legalább 24 órával korábban előzetes értesítést küld Magyarországnak a helyszínre érkezéséről;

(ii) Egy telephely bármely helyéhez való hozzáférés esetén, amelyet az adott telephelyen a létesítményi adatok ellenőrzésére irányuló szemlével, vagy az alkalmi, illetve szokványos helyszíni ellenőrzésekkel egyidejűleg kezdeményeznek, az előzetes értesítés ideje, amennyiben ezt az Ügynökség úgy igényli, legalább két óra, de kivételes esetekben két óránál kevesebb is lehet.

c. Az előzetes értesítést írásban kell megtenni, feltüntetve benne a helyszínre való belépés indokait és az annak folyamán végrehajtandó tevékenységeket.

d. Amennyiben kérdés vagy ellentmondás vetődik fel, az Ügynökség lehetőséget ad Magyarországnak a kérdés vagy az ellentmondás tisztázására és a megoldás elősegítésére. Az Ügynökség a hozzáférési igény bejelentése előtt biztosítja Magyarország számára ezt a lehetőséget, kivéve, ha az Ügynökség úgy ítéli meg, hogy a késleltetett hozzáférés hátrányosan befolyásolja annak eredeti célját. Az Ügynökség egyetlen esetben sem von le végkövetkeztetéseket a kérdésekkel vagy ellentmondásokkal kapcsolatban, míg Magyarország nem kap lehetőséget azok tisztázására.

e. A belépésre csak rendes munkaidőben kerül sor, kivéve a Magyarországgal kötött ettől eltérő megállapodásokat.

f. Az Ügynökség ellenőreit a helyszíni látogatásokon Magyarország képviselői jogosultak kísérni, azzal a feltétellel, hogy ez nem késlelteti vagy más módon nem akadályozza az ellenőröket a feladatuk elvégzésében.

5. Cikk

Magyarország biztosítja az Ügynökség számára a belépést a következő helyekre:

a. (i) Egy telephely bármely helyére;

(ii) A Magyarország által a 2. Cikk a. bekezdés (v)-(viii) pontjaiban meghatározott helyszínekre;

(iii) Bármely leszerelt létesítménybe vagy leszerelt létesítményen kívüli helyszínre, ahol nukleáris anyag rendszeres alkalmazására került sor.

b. Bármely, Magyarország által a 2. Cikk a. bekezdés (i), (iv) és (ix) (b) pontja vagy a 2. Cikk b. bekezdésben meghatározott helyszínekre, a fenti a. bekezdés (i) pontjában meghatározottak kivételével. Amennyiben Magyarország nem képes az ilyen helyszínekhez való hozzáférést biztosítani, Magyarország minden elvárható erőfeszítést megtesz annak érdekében, hogy az Ügynökség igényeit késlekedés nélkül más módon elégítse ki.

c. A fenti a. és b. bekezdésben meghatározott helyszínek kivételével bármely, az Ügynökség által meghatározott helyszínre, helyszín-specifikus környezeti mintavétel elvégezése céljából, azzal a feltétellel, hogy ha Magyarország nem képes az ilyen hozzáférést biztosítani, akkor Magyarország késedelem nélkül megtesz minden elvárható erőfeszítést annak érdekében, hogy az Ügynökség követelményeit a szomszédos helyszíneken vagy más módon késedelem nélkül kielégítse.

6. Cikk

Az 5. Cikk végrehajtása során az Ügynökség az alábbi tevékenységeket végezheti:

a. Az 5. Cikk a. bekezdés (i), illetve (iii) pontjai szerinti hozzáférés során: vizuális megfigyelés; környezeti minták gyűjtése; sugárdetektorok és mérő műszerek alkalmazása; a Kiegészítő Megállapodásokban felsorolt pecsétek és egyéb azonosító, illetve beavatkozást kimutató eszközök alkalmazása; valamint egyéb olyan objektív intézkedések, amelyek műszakilag bizonyítottan kivitelezhetők és amelyek használatát az Ügynökség Kormányzótanácsa (továbbiakban: Kormányzótanács) jóváhagyta, majd azt követően az Ügynökség és Magyarország az alkalmazásukról konzultált.

b. Az 5. Cikk a. bekezdés (ii) pontja szerinti belépés során: vizuális megfigyelés; a nukleáris anyag megszámlálása; roncsolásmentes vizsgálat és mintavétel; sugárdetektorok és mérőműszerek alkalmazása; az anyag mennyiségére, eredetére és elhelyezésére vonatkozó feljegyzések vizsgálata; környezeti minták gyűjtése, valamint egyéb olyan objektív intézkedések, amelyek műszakilag bizonyítottan kivitelezhetők és amelyek használatát a Kormányzótanács jóváhagyta, majd azt követően az Ügynökség és Magyarország az alkalmazásukról konzultált.

c. Az 5. Cikk b. bekezdése szerinti hozzáférés során: vizuális megfigyelés; környezeti minták gyűjtése; sugárdetektorok és mérőműszerek alkalmazása; betekintés a biztosítékok szempontjából lényeges termelési és szállítási okmányokba, valamint egyéb olyan objektív intézkedések, amelyek műszakilag bizonyítottan kivitelezhetők és amelyek használatát a Kormányzótanács jóváhagyta, majd azt követően az Ügynökség és Magyarország az alkalmazásukról konzultált.

d. Az 5. Cikk c. bekezdése szerinti hozzáférés során: környezeti minták gyűjtése, valamint, ha az Ügynökség által az 5. Cikk c. bekezdésében meghatározott helyszín esetében az eredmények nem adnak választ a kérdésre vagy nem oldják fel az ellentmondást, az adott helyszínen vizuális megfigyelő, sugárdetektorok és mérőműszerek alkalmazása és Magyarország és az Ügynökség által elfogadott egyéb objektív intézkedések alkalmazása.

7. Cikk

a. Amennyiben Magyarország igényli, az Ügynökség és Magyarország a nukleáris fegyverek elterjedése szempontjából érzékeny információk kiszivárgásának megakadályozása, a biztonsági és a fizikai védelmi követelmények kielégítése, valamint a tulajdoni és kereskedelmi szempontból érzékeny információk megvédése érdekében e Jegyzőkönyv szerinti irányított hozzáférésről állapodhatnak meg. Ezek a megállapodások nem akadályozhatják az Ügynökséget abban, hogy kielégítő bizonyítékokat szerezzen arról, hogy a kérdéses helyszínen nem található bejelentetlen nukleáris anyag és nem végeznek bejelentetlen tevékenységet; ide tartozik továbbá a 2. Cikk szerinti adatok helyességére és teljességére vonatkozó kérdések tisztázása, valamint azok ellentmondásainak feloldása is.

b. Magyarországnak jogában áll, hogy a 2. Cikk szerinti adatok átadásakor tájékoztassa az Ügynökséget az egyes telephelyeken található azon helyekről, illetve azon helyszínekről, amelyek esetében irányított hozzáférést kíván alkalmazni.

c. Addig is, amíg a szükséges Kiegészítő Megállapodások hatályba lépnek, Magyarország jogosult a fenti a. bekezdés szerinti irányított hozzáférést alkalmazni.

8. Cikk

A Jegyzőkönyvben foglaltak nem zárják ki, hogy Magyarország hozzáférést ajánljon fel az Ügynökség számára az 5. és a 9. Cikk szerinti helyszíneken túl további helyszínekhez, illetve, hogy felkérje az Ügynökséget egy adott helyszín ellenőrzésére. Az Ügynökség késedelem nélkül megtesz minden elvárható intézkedést, hogy ezen felkérésnek eleget tegyen.

9. Cikk

Magyarország hozzáférést biztosít az Ügynökség számára az Ügynökség által megjelölt helyszínekhez nagy területű környezeti mintavétel végzésére. Amennyiben Magyarország nem képes ilyen hozzáférést biztosítani, akkor megtesz minden elvárható lépést annak érdekében, hogy alternatív helyszíneken elégítse ki az Ügynökség ilyen igényeit. Az Ügynökség addig nem igényel ilyen hozzáférést, ameddig a nagy területű környezeti mintavételt és annak eljárási szabályait a Kormányzótanács jóvá nem hagyta, majd azt követően az Ügynökség és Magyarország erről nem konzultált.

10. Cikk

Az Ügynökség tájékozatja Magyarországot az alábbiakról:

a. A Jegyzőkönyv szerinti tevékenységekről, ideértve azon tevékenységeket is, amelyek azokkal a kérdésekkel vagy ellentmondásokkal kapcsolatosak, amelyekről az Ügynökség már előzőleg értesítette Magyarországot, az Ügynökség által végzett tevékenységtől számított hatvan napon belül.

b. Bármilyen, az Ügynökség által Magyarország tudomására hozott kérdéssel vagy ellentmondással kapcsolatos tevékenység eredményéről, a lehető leggyorsabban, de legkésőbb harminc napon belül azután, hogy az Ügynökség ezen eredményeket megállapította.

c. Azon következtetésekről, amelyekre az Ügynökség a Jegyzőkönyv alapján végzett tevékenysége alapján jutott. Ezen következtetéseket évente közli az Ügynökség.

Ügynökségi ellenőrök kijelölése

11. Cikk

a. (i) A Főigazgató értesíti Magyarországot az Ügynökség bármely tisztviselőjének biztosítéki ellenőrré történő, a Kormányzótanács által jóváhagyott kinevezése esetén. Amennyiben Magyarország nem értesíti a Főigazgatót a bejelentett ellenőr magyarországi ellenőrré történő kinevezésnek visszautasításáról a Kormányzótanács jóváhagyásáról szóló értesítés beérkezésétől számított három hónapon belül, az érintett ellenőr magyarországi ellenőrré történt kinevezése érvényesnek tekintendő.

(ii) A Főigazgató azonnal értesíti Magyarországot az egyes tisztviselők magyarországi ellenőri kinevezésének Magyarország kérésére vagy saját kezdeményezésére történt visszavonásáról.

b. A fenti a. bekezdés szerinti értesítést hét nappal az Ügynökség által ajánlott küldeményként Magyarországra történő postára adását követően úgy kell tekinteni, hogy az Magyarország tudomására jutott.

Vízumok

12. Cikk

Magyarország az erre vonatkozó kérelem beérkezésétől számított egy hónapon belül a kérelemben feltüntetett kinevezett ellenőr számára - amennyiben szükséges - megfelelő többszöri be- és kiutazásra, illetve tranzitra jogosító vízumot bocsát rendelkezésre, hogy lehetővé tegye az ellenőr Magyarország területére történő belépését és ott-tartózkodását a feladatainak végrehajtása céljából. Minden igényelt vízumnak legalább egy évig érvényesnek kell lennie és igény esetén azokat az ellenőr magyarországi ellenőri kinevezésének időtartamára meg kell újítani.

Kiegészítő megállapodások

13. Cikk

a. Amennyiben Magyarország vagy az Ügynökség jelzi, hogy a Jegyzőkönyvben rögzített intézkedések végrehajtásának módját Kiegészítő Megállapodásokban kell részletezni, Magyarország és az Ügynökség a Jegyzőkönyv hatálybalépésétől számított kilencven napon belül megállapodik ezekről a Kiegészítő Megállapodásokról. Amennyiben a Kiegészítő Megállapodások iránti igény a Jegyzőkönyv hatálybalépése után vetődik fel, a velük kapcsolatos megállapodás határideje az igény kinyilvánításától számított kilencven nap.

b. Addig is, amíg a szükséges Kiegészítő Megállapodások hatályba lépnek, az Ügynökségnek jogában áll a Jegyzőkönyv szerinti intézkedéseket alkalmazni.

Hírközlési rendszerek

14. Cikk

a. Magyarország engedélyezi és védi az Ügynökség hivatalos célú szabad hírtovábbítását az Ügynökség Magyarország területén tartózkodó ellenőre és az Ügynökség Központja és/vagy Területi Irodái között, ideértve az Ügynökség körülhatárolási (pecsételési) és/vagy megfigyelési rendszerei vagy mérőeszközei által létrehozott információk felügyelet melletti vagy felügyelet nélküli továbbítását is. Az Ügynökség Magyarországgal való konzultáció alapján jogosult a nemzetközi telepítésű közvetlen kommunikációs rendszerek használatára, ideértve a műholdas kommunikációt és más olyan kommunikációs rendszereket, amelyek nincsenek használatban Magyarországon. Magyarország vagy az Ügynökség kérése alapján e bekezdés végrehajtásának az Ügynökség pecsételési és/vagy megfigyelési rendszerei vagy mérőeszközei által létrehozott információk felügyelet melletti vagy felügyelet nélküli továbbítására vonatkozó részleteit a Kiegészítő Megállapodásokban kell kidolgozni.

b. A fenti a. bekezdés szerinti kommunikációnak és információtovábbításnak kellő figyelmet kell fordítania mindazon tulajdonosi vagy kereskedelmi szempontból érzékeny információ vagy mindazon létesítményi adatok védelmére, amelyeket Magyarország különösen érzékenynek minősít.

Bizalmas információk védelme

15. Cikk

a. Az Ügynökségnek szigorú rendszert kell létrehoznia a tudomására jutó kereskedelmi, technológiai és ipari titkok és egyéb bizalmas információk nyilvánosságra hozatalának megakadályozására, ideértve azokat az információkat is, amelyek a Jegyzőkönyv végrehajtása kapcsán jutnak az Ügynökség tudomására.

b. A fenti a. bekezdés szerinti rendszer egyebek közt az alábbiakra vonatkozó intézkedéseket foglalja magába:

(i) A bizalmas információk kezelésére vonatkozó általános elvek és ezzel kapcsolatos intézkedések;

(ii) A személyzet alkalmazásának a bizalmas adatok védelmével kapcsolatos feltételei;

(iii) A bizalmasság tényleges vagy vélt megsértése esetén alkalmazandó eljárások.

c. A fenti a. bekezdés szerinti rendszert a Kormányzótanács hagyja jóvá és azt rendszeresen felülvizsgálja.

Mellékletek

16. Cikk

a. A Jegyzőkönyv Mellékletei a Jegyzőkönyv elválaszthatatlan részét képezik. A Mellékletek módosításának esetét kivéve, az e dokumentumban használt „Jegyzőkönyv” kifejezés a Jegyzőkönyvre és Mellékleteire együtt értendő.

b. Az I. Melléklet szerinti tevékenységek, valamint a II. Melléklet szerinti berendezések és anyagok jegyzékét a Kormányzótanács az általa létesített, nyitott szakértői munkacsoport javaslatai alapján módosíthatja. Minden ilyen módosítás a Kormányzótanács által történt elfogadás után 4 hónappal lép hatályba.

Hatálybalépés

17. Cikk

Ezen Jegyzőkönyv azon a napon lép hatályba, amikor az Ügynökség írásos értesítést kap Magyarországtól, hogy a hatálybalépéshez szükséges törvényes és alkotmányos feltételek teljesültek.

Magyarországnak a Jegyzőkönyv hatálybalépése előtt bármikor jogában áll annak kinyilvánítása, hogy a Jegyzőkönyvet ideiglenes jelleggel alkalmazni kívánja.

A Főigazgató minden tagállamot azonnal értesít a Jegyzőkönyv ideiglenes alkalmazására vonatkozó bármely nyilatkozatról, illetve a Jegyzőkönyv hatálybalépéséről.

Meghatározások

18. Cikk

Ezen Jegyzőkönyv alkalmazásában:

a. Nukleáris üzemanyagciklussal összefüggő kutatási és fejlesztési tevékenység olyan tevékenységeket jelent, amelyek kifejezetten az alábbiakban felsoroltak bármilyen eljárási vagy rendszerfejlesztési kérdésére vonatkoznak:

- nukleáris anyag konverziója;

- nukleáris anyag dúsítása;

- nukleáris üzemanyag gyártása;

- reaktorok;

- kritikus rendszerek;

- nukleáris üzemanyag újrafeldolgozása;

- közepes vagy nagyaktivitású, plutóniumot, magas dúsítású uránt vagy U-233-at tartalmazó hulladékok feldolgozása (kivéve a tárolást vagy végső elhelyezést szolgáló átcsomagolást vagy előkezelést, amely nem jár vegyi elemek szétválasztásával) nem terjed ki azonban az elméleti vagy a tudományos alapkutatásra, illetve a radioizotópok ipari, orvosi, vízügyi és mezőgazdasági alkalmazásaival, valamint az egészségre és környezetre gyakorolt hatásokkal és a továbbfejlesztett karbantartással foglalkozó kutatásra és fejlesztésre.

b. Telephelyen értendő az a terület, amelyet Magyarország meghatározott egy létesítmény létesítményi leírásában, beleértve a leállított létesítményeket, és az olyan létesítményen kívüli helyszínekről adott információkban, ahol rendszeresen használnak nukleáris anyagokat, beleértve a leállított létesítményen kívüli helyszíneket, ahol rendszeresen használtak nukleáris anyagokat (ide csak olyan helyszínek tartoznak, ahol forró kamrák vannak, vagy olyan műveleteket hajtottak végre, amelyeknek köze volt nukleáris anyagok konverziójához, dúsításához, üzemanyaggyártáshoz vagy újrafeldolgozáshoz). A telephelybe beletartozik minden olyan üzem is, amely együtt van telepítve a létesítménnyel vagy helyszínnel, és amelynek rendeltetése lényeges szolgáltatások nyújtása, beleértve az alábbiakat: forró kamrák nukleáris anyagot nem tartalmazó besugárzott anyagok feldolgozására, berendezések hulladék kezelésére, tárolására és végső elhelyezésére; valamint mindazon épületek, amelyek a Magyarország által a fenti 2. Cikk a. bekezdésének (iv) pontja szerint azonosítottakkal kapcsolatosak.

c. Leszerelt létesítményen vagy leszerelt létesítményen kívüli helyszínen olyan létesítmény vagy helyszín értendő, amelyről a használatukhoz lényeges építményeket, illetve berendezéseket elvitték, illetve ezeket működésre alkalmatlanná tettek, úgy hogy az nem szolgálhat nukleáris anyag tárolására és nem használható többé annak kezelésére, feldolgozására vagy alkalmazására.

d. Leállított létesítményen vagy leállított létesítményen kívüli helyszínen olyan létesítmény vagy helyszín értendő, ahol a műveleteket leállították és ahonnét a nukleáris anyagot eltávolították, de amelyet még nem szereltek le.

e. Magas dúsítású urán jelenti a 20%-os vagy magasabb dúsítású U-235 izotópot tartalmazó uránt.

f. Helyszín specifikus környezeti mintavételen olyan környezeti minták (pl. levegő, víz, növényzet, talaj, illetve dörzsminta) vétele értendő, amelyeket egy az Ügynökség által megnevezett helyszínen, illetve annak közvetlen környezetéből gyűjtöttek, avégett, hogy támogassák az Ügynökséget azon következtetések levonásában, hogy egy adott helyszínen nincs be nem jelentett nukleáris anyag, illetve nem végeznek be nem jelentett nukleáris tevékenységet.

g. Nagy területű környezeti mintavétel alatt olyan környezeti minták (pl. levegő, víz, növényzet, talaj, illetve dörzsminta) vétele értendő, amelyeket az Ügynökség által megnevezett helyszínek sorozatából gyűjtöttek be, avégett, hogy támogassák az Ügynökséget azon következtetések levonásában, hogy egy tágabb körzetben nincs be nem jelentett nukleáris anyag, illetve nem végeznek be nem jelentett nukleáris tevékenységet.

h. Nukleáris anyag a NAÜ Alapokmányának XX. Cikkében meghatározott bármilyen alapüzemanyagot vagy különleges hasadóanyagot jelent. Az alapüzemanyag fogalmát nem lehet úgy értelmezni, hogy az ércet vagy érchulladékot is magába foglaljon. A Jegyzőkönyv hatálybalépése után a Kormányzó-tanácsnak az Ügynökség Alapokmányának XX. Cikkére vonatkozó minden olyan meghatározása, amely kibővíti az alapüzemanyagnak vagy különleges hasadóanyagnak tekintendő anyagok körét, a Jegyzőkönyv szempontjából csak annak a Magyarország által történt elfogadása után válik hatályossá.

i. A létesítmény jelent:

(i) reaktort, zéró teljesítményű reaktort, konvertáló üzemet, üzemanyaggyártó üzemet, reprocesszáló üzemet, izotópszétválasztó üzemet és önálló tároló létesítményt, vagy

(ii) bármilyen telephelyet, ahol egy effektív kilogrammnál nagyobb mennyiségű nukleáris anyagot használnak rendszeresen.

j. Létesítményen kívüli helyszínen értendő minden olyan üzem vagy helyszín, amely nem egy létesítmény, és ahol rendszeresen használnak nukleáris anyagot egy effektív kilogrammnyi vagy annál kisebb mennyiségekben.

Készült Bécsben, 1998. november 26-án két példányban angol nyelven.

(Aláírások)

I. MELLÉKLET

A JEGYZŐKÖNYV 2. CIKK a. BEKEZDÉSÉNEK (iv) PONTJÁBAN HIVATKOZOTT TEVÉKENYSÉGEK FELSOROLÁSA

(i) Centrifuga rotorcsövek előállítása vagy gázcentrifugák összeszerelése.

A centrifuga rotorcsövek a II. Melléklet 5.1.1.(b) pontjában említett vékonyfalú hengerek.

A gázcentrifugák a II. Melléklet 5.1. pontjának Bevezető Megjegyzésében leírt centrifugák.

(ii) Diffúziós válaszfal előállítása.

A diffúziós válaszfalak a II. Melléklet 5.3.1.(a) pontjában leírt vékony porózus szűrők.

(iii) Lézer alapú rendszerek előállítása vagy összeszerelése.

A lézer alapú rendszerek a II. Melléklet 5.7. pontjában leírt berendezéseket tartalmazó rendszerek.

(iv) Elektromágneses izotópszétválasztók előállítása vagy összeszerelése.

Az elektromágneses izotópszétválasztók olyan, a II. Melléklet 5.9.1. pontjában leírt berendezések, amelyek a II. Melléklet 5.9.1.(a) pontjában leírt ionforrásokat tartalmaznak.

(v) Oszlopok vagy lepárló berendezések előállítása vagy összeszerelése.

Az oszlopok vagy lepárló berendezések a II. Melléklet 5.6.1., 5.6.2., 5.6.3., 5.6.5, 5.6.6, 5.6.7. és 5.6.8 pontjában leírt berendezések.

(vi) Aerodinamikus leválasztó fúvókák vagy vortex csövek előállítása.

Az aerodinamikus leválasztó fúvókák vagy vortex csövek a II. Melléklet 5.5.1. valamint 5.5.2. pontjaiban leírt berendezések.

(vii) Uránplazma generáló rendszerek gyártása vagy összeszerelése.

Az uránplazma generáló rendszerek a II. Melléklet 5.8.3. pontjában leírt, uránplazma előállításra szolgáló berendezések.

(viii) Cirkónium csövek előállítása.

A cirkónium csövek a II. Melléklet 1.6. pontjában meghatározott csövek.

(ix) Nehézvíz vagy deutérium előállítása vagy minőségének javítása.

A nehézvíz vagy deutérium a következőket jelenti: deutérium, nehézvíz (deutérium-oxid) és bármely más deutérium vegyület, amelyben a deutérium és a hidrogén atomok aránya meghaladja az 1:5000 értéket.

(x) Nukleáris minőségű grafit gyártása.

A nukleáris minőségű grafit olyan minőségű grafit, amelynek tisztasági mutatója kisebb, mint 5 ppm bór egyenérték és sűrűsége nagyobb, mint 1,50 g/cm3.

(xi) Konténerek gyártása besugárzott üzemanyag számára.

A besugárzott üzemanyag számára gyártott konténerek olyan tartályok, amelyek a besugárzott üzemanyag szállítására és/vagy tárolására szolgálnak és kémiai-, hő- és sugárvédelmet biztosítanak, valamint biztosítják a keletkező bomlási hő elvezetését a kezelés, szállítás és tárolás folyamán.

(xii) Atomreaktor szabályzó rudak gyártása.

Az atomreaktor szabályzó rudak a II. Melléklet 1.4. pontjában leírt rudak.

(xiii) Kritikus biztonságú tartályok és edények gyártása.

A kritikus biztonságú tartályok és edények a II. Melléklet 3.2. és 3.4. pontjában leírt termékek.

(xiv) Besugárzott fűtőelem daraboló gépek gyártása.

A besugárzott fűtőelem daraboló gépek a II. Melléklet 3.1. pontjában szereplő berendezések.

(xv) Forrókamrák gyártása

A forrókamrák azok a cellák vagy összekapcsolt cellák, amelyek térfogata összesen legalább 6 m3 és legalább 3,2 g/cm3 vagy nagyobb sűrűségű, legalább 0,5 m vastag beton vagy azzal egyenértékű vagy jobb árnyékolással rendelkeznek, valamint fel vannak szerelve a távirányítású műveletekhez használható manipulátorokkal.

II. MELLÉKLET

MEGHATÁROZOTT BERENDEZÉSEK ÉS NEM-NUKLEÁRIS ANYAGOK JEGYZÉKE AZ EXPORTRÓL ÉS IMPORTRÓL A 2. CIKK a. BEKEZDÉSÉNEK (ix) PONTJA SZERINT ADANDÓ JELENTÉSEKHEZ

1. Reaktorok és azok berendezései

1.1. Atomreaktorok

Atomreaktorok, azaz a szabályozott önfenntartó hasadási láncreakciót folyamatosan fenntartó reaktorok, kivéve a zéróteljesítményű reaktorokat, melyek meghatározása a következő: azon reaktorok, amelyekben a termelt plutónium tervezett legnagyobb mennyisége nem haladja meg az évi 100 grammot.

Magyarázó megjegyzés

Az „atomreaktor” alapvetően magába foglalja azokat az alkotó elemeket, amelyek a reaktortartályon belül találhatók, vagy közvetlenül a tartályhoz kapcsolódnak, valamint az aktív zóna teljesítmény szintjét szabályozó berendezéseket, továbbá azon alkotó elemeket, amelyek normális körülmények között befogadják, közvetlenül érintkeznek vele vagy szabályozzák a primerköri hűtőközeget.

Nem cél azon reaktorok kizárása, amelyek ésszerűen alkalmasak lehetnek olyan módosításokra, amelyek révén évente 100 grammnál számottevően több plutóniumot tudnának termelni. Olyan reaktorok, amelyeket úgy terveztek, hogy hosszabb ideig jelentős üzemi teljesítményen működjenek, nem tekintendők „zéróteljesítményű reaktoroknak”, függetlenül attól, hogy mekkora a plutónium termelési kapacitásuk.

1.2. Nagynyomású reaktor tartályok

Nagynyomású tartályok, azaz komplett fémtartály egységek vagy ezek számára gyártott főbb alkatrészek, melyeket speciálisan azzal a céllal terveztek vagy alakítottak ki, hogy a fenti 1.1. pontban meghatározott atomreaktor aktív zónáját befogadják, és amelyek ellenállnak a primer hűtőközeg üzemi nyomásának.

Magyarázó megjegyzés

Az 1.2. pont vonatkozik a nagynyomású reaktortartály felső fedelére, mint a nyomástartó edény főbb előre gyártott alkotóelemére.

A reaktortartály belső szerkezeteit (például a reaktor aknát, a zónát tartó kosarat, valamint a reaktor tartály más belső szerkezeteit, a szabályozórúd vezető csövek védőcső- és fékezőcső blokkját, termikus árnyékolásokat, a hűtőközeg áramlását terelő felületeket stb.) rendszerint a reaktor gyártója szállítja. Néhány esetben bizonyos belső tartóelemek hozzátartoznak a nagynyomású tartály gyártásához. Ezek a berendezések eléggé kritikusak a reaktor biztonsága és megbízható üzeme (és így a reaktor szállítójának garanciái és felelőssége) szempontjából ahhoz, hogy magának a reaktornak a szállítására vonatkozó szerződésen kívüli szállításuk általános gyakorlat volna. Ezért, annak ellenére, hogy ezeknek az egyedi, speciálisan tervezett és gyártott, kritikus, nagy és drága berendezéseknek a külön történő szállítása nem feltétlenül tekinthető az érdekeltség területén kívülinek, az mégsem valószínű.

1.3. Fűtőelem átrakó gépek

Fűtőelemeket kezelő berendezések, amelyeket speciálisan a fűtőelemeknek a fenti 1.1. pontban meghatározott reaktorba való berakására és kiemelésére terveztek vagy készítettek, és amelyek képesek a reaktor üzeme közbeni működésre vagy olyan műszakilag fejlett pozícionálási vagy beállítási képességekkel rendelkeznek, amelyek a reaktor leállított állapotában üzemanyag-átrakási műveleteket tesznek lehetővé, amelyekben az üzemanyag normál körülmények között nem látható vagy hozzáférhető.

1.4. Reaktor szabályozó rudak

A fenti 1.1. pontban meghatározott reaktorban a reakciósebesség szabályozására speciálisan tervezett vagy készített szabályozó rudak.

Magyarázó megjegyzés

Ez a tétel magába foglalja a neutronabszorbeáló részeket és az ezek tartására, felfüggesztésére alkalmas szerkezeteket is, amennyiben szállításuk külön történik.

1.5. Nyomástartó csövek

Nyomástartó csövek, azaz a fenti 1.1. pontban meghatározott reaktorban 5,1 MPa-nál nagyobb üzemi nyomáson a fűtőelemek és a primer hűtőközeg befogadására speciálisan tervezett vagy átalakított csövek.

1.6. Cirkónium csövek

Cirkóniumból vagy cirkónium ötvözetből készült csövek és csőszerelvények, összességükben 12 hónapos időszakon belül 500 kg-ot meghaladó mennyiségben, amelyeknél a hafnium:cirkónium tömegarány kisebb, mint 1:500 és kifejezetten a fenti 1.1. pontban meghatározott reaktorokhoz terveztek és gyártottak.

1.7. Primerköri hűtőszivattyúk

Szivattyúk, azaz a fenti 1.1. pontban meghatározott reaktorok primerköri hűtőközegének keringtetésére speciálisan terveztek vagy készítettek.

Magyarázó megjegyzés

Speciálisan erre a célra tervezett és gyártott szivattyúk, amelyek magukba foglalják a bonyolult tömítésű vagy többszörös tömítésű rendszereket a primerköri hűtővíz szivárgásának megakadályozására, tokozott hajtású szivattyúkat és lendítőtömeg-rendszerrel rendelkező szivattyúkat. Ez a meghatározás magába foglalja az NC-1 vagy annak megfelelő minősítésű szivattyúkat.

2. Nem-nukleáris anyagok reaktorokhoz

2.1. Deutérium és nehézvíz

Deutérium, nehézvíz (deutérium oxid) és bármely más deutérium tartalmú vegyület, amelyben a deutérium:hidrogén izotóparány meghaladja az 1:5000 mértéket, és amelyet a fenti 1.1. pont szerinti reaktorban való felhasználásra szántak, bármely fogadó ország esetében bármely 12 hónapos időszakon belül a 200 kg deutériumot meghaladó mennyiségben.

2.2. Nukleáris minőségű grafit

Olyan grafit, melynek tisztasági mutatója kisebb, mint 5 ppm bór egyenérték és sűrűsége nagyobb, mint 1,50 g/cm3 és amelyet a fenti 1.1. pont szerinti reaktorokban való felhasználásra szántak, bármely fogadó ország esetében bármely 12 hónapos időszakon belül a 3x104 kg-ot (30 tonna) meghaladó mennyiségben.

Megjegyzés

A jelentéstétel szempontjából a Kormány határozza meg, hogy az exportált, fenti követelményeket kielégítő grafit reaktorban való felhasználásra szolgál-e.

3. A reaktorok besugárzott fűtőelemeinek újrafeldolgozására (reprocesszálására) szolgáló üzemek, valamint kifejezetten ezekhez tervezett vagy gyártott berendezések

Bevezető megjegyzés

A besugárzott nukleáris üzemanyag reprocesszálása során a plutóniumot és az uránt szétválasztják az erősen radioaktív hasadási termékektől és más transzurán elemektől. A szétválasztást különböző műszaki megoldásokkal végezhetik. Az évek során azonban a Purex eljárás lett a legelfogadottabb és a legszélesebb körben használatos módszer. A Purex módszer szerint a besugárzott nukleáris üzemanyagot salétromsavban feloldják, majd az oldószer kivonásával, szerves oldószerben feloldott tributil foszfát segítségével szétválasztják az uránt, a plutóniumot és a hasadási termékeket.

A Purex üzemeknek egymáshoz hasonló feldolgozási folyamatai vannak, beleértve a besugárzott fűtőelemek feldarabolását, az üzemanyag feloldását, az oldószer kivonását és a keletkezett folyadék tárolását. Ezen kívül használhatnak bennük az urán nitrát termikus denitrálására, a plutónium nitrát oxiddá vagy fémmé történő alakítására, a hasadási termékeket tartalmazó folyadék hosszú távú tárolását vagy végső elhelyezését lehetővé tevő formába való átalakítására szolgáló berendezéseket. Az ezeket a feladatokat ellátó berendezések típusa és konfigurációja számos ok miatt különbözhet az egyes Purex üzemekben, ezek közé tartozik a reprocesszálandó besugárzott üzemanyag típusa és mennyisége, a visszanyert anyagok tervezett végső elhelyezése, valamint az üzem tervezésénél követett biztonsági és karbantartási filozófia.

A „besugárzott fűtőelemek reprocesszálására szolgáló üzem” azokat a berendezéseket és alkatrészeket foglalja magába, amelyek üzemszerűen közvetlen kapcsolatba kerülnek a besugárzott üzemanyaggal, és közvetlenül szabályozzák a besugárzott üzemanyag, a főbb nukleáris anyag és hasadási termék áramokat.

Ezek a folyamatok, beleértve a komplett plutónium konverziós és fém-plutóniumtermelő rendszereket, azokról az intézkedésekről ismerhetők fel, amelyekkel elkerülik a kritikusságot (például a geometria megválasztásával), a sugárzásveszélyt (például árnyékolással), a mérgezésveszélyt (például konténmenttel).

A besugárzott fűtőelemek reprocesszálására „speciálisan tervezett vagy gyártott” kategóriába tartozó berendezések közé tartoznak az alábbiak:

3.1. Besugárzott fűtőelem daraboló gépek

Bevezető megyjegyzés

Ezek a berendezések feltörik az üzemanyag burkolatát, hogy a besugárzott nukleáris anyagot kioldhassák belőle. Erre legtöbbször speciálisan tervezett fémvágókat használnak, de fejlettebb berendezések, mint például lézerek is használhatók.

Távvezérelhető berendezések, amelyeket kifejezetten a fentiek szerinti reprocesszáló üzemben való használatra terveztek vagy gyártottak besugárzott nukleáris fűtőelemek, elemkötegek vagy rudak vágására, darabolására vagy zúzására.

3.2. Feloldó tartályok

Bevezető megjegyzés

A feldarabolt kiégett üzemanyag rendszerint a feloldó tartályokba érkezik. Ezekben a kritikusság szempontjából biztonságos tartályokban a besugárzott nukleáris anyagot salétromsavban feloldják és a megmaradó burkolatot eltávolítják a technológiai folyamatból.

A besugárzott üzemanyag feloldására speciálisan tervezett vagy kialakított a kritikusság szempontjából biztonságos tartályok (azaz kis átmérőjű, gyűrű alakú vagy kupos tartályok) a fentiek szerinti reprocesszáló üzemekben való használatra, melyek ellenállnak hő, erősen korrodáló folyadékok hatásának, és amelyek távvezérléssel tölthetők és karbantarthatók.

3.3. Oldószer extraktorok és berendezéseik

Bevezető megjegyzés

Az oldószer extraktorokba kerül mind a feloldó tartályokban feloldott besugárzott üzemanyag oldata, mind pedig az uránt, a plutóniumot és a hasadási termékeket elválasztó szerves oldószerek. Az oldószer extraktorokat általában szigorú üzemi paraméterekre tervezik, mint pl. karbantartás nélküli hosszú élettartamra, vagy könnyű cserélhetőségre, egyszerű üzemeltetésre és vezérlésre, valamint rugalmas alkalmazkodásra a folyamat változó körülményeihez.

A besugárzott üzemanyag újrafeldolgozására szolgáló üzemben való felhasználásra speciálisan tervezett vagy kialakított oldószeres extraktorok, mint pl. a betétes vagy impulzusos oszlopok, a keverők ülepítő edényei vagy a centrifugális kontaktorok. Az oldószer-extraktoroknak ellen kell állniuk a salétromsav koróziós hatásának. Az oldószeres extraktorok általában különlegesen magas követelményeket kielégítő módon (különleges hegesztési, vizsgálati, minőségbiztosítási és minőségellenőrzési módszerek) készülnek, kis széntartalmú rozsdamentes acélból, titánból, cirkóniumból vagy más jó minőségű anyagból.

3.4. Vegyi tartályok és tárolóedények

Bevezető megjegyzés

Az oldószer-extrakciós folyamat három fő folyadék-áramból áll. A tartályokat vagy tárolóedényeket a három folyadékáram tovább-feldolgozására használják a következők szerint:

(a) A tiszta urán nitrát oldatot bepárlással koncentrálják és egy denitráló folyamatba vezetik be, ahol urán oxiddá alakul. Ezt az oxidot a nukleáris üzemanyagciklusban újból felhasználják.

(b) Az erősen radioaktív hasadási termékek oldatát általában bepárlással koncentrálják és folyadékkoncentrátum formájában tárolják. Ezt a koncentrátumot később tovább bepárolhatják és tárolásra vagy végső elhelyezésre alkalmas formába alakíthatják át.

(c) A tiszta plutónium nitrát oldatot koncentrálják és tárolják, az ezt követő feldolgozási lépésekhez való továbbítástól függően. A plutónium oldatok tárolására szolgáló tartályok és tároló edények tervezése során különös figyelmet fordítanak arra, hogy elkerüljék a koncentráció és az áram formájának változásából adódó kritikussági problémákat.

A besugárzott fűtőelemek újrafeldolgozó üzeme számára speciálisan tervezett vagy gyártott tartályok és tároló edények, amelyeknek ellent kell állniuk a salétromsav korróziós hatásának. Ezek a tartályok vagy tároló edények általában kis széntartalmú rozsdamentes acélból, titánból, cirkóniumból vagy más jó minőségű anyagból készülnek. A tartályokat vagy tároló edényeket úgy tervezhetik, hogy távirányítással működtethetők és karbantarthatók legyenek, és az alábbi adottságokkal rendelkezhetnek a kritikus állapot elkerülése végett:

(1) a falak és belső szerkezetek bóregyenértéke min. 2%, vagy

(2) a hengeres tartályok max. átmérője 175 mm, vagy

(3) a gyűrű alakú, illetve a lapos tartályok max. szélessége 75 mm.

3.5. Plutónium-nitrátot oxiddá alakító rendszerek

Bevezető megjegyzés

A legtöbb reprocesszáló üzemben ez az utolsó folyamat magába foglalja a plutónium nitrát oldat plutónium dioxiddá való alakítását. Ennek az eljárásnak a főbb lépései: az adagolt anyag tárolása és az adagolás beállítása, kicsapatás és a szilárd/folyékony fázis szétválasztása, kalcinálás, a termék kezelése, szellőzés, hulladékkezelés és a folyamat vezérlése.

Teljes rendszerek, melyeket a plutónium-nitrát plutónium-oxiddá való alakítására speciálisan terveztek vagy készítettek és amelyeket különösen alkalmassá tettek a kritikus állapot, valamint a sugárhatások elkerülésére és a mérgezési kockázat minimalizálására.

3.6. Plutónium-oxidot fémmé alakító rendszerek

Bevezető megjegyzés

Ez a folyamat, amely egy reprocesszáló üzemhez kapcsolódhat, magába foglalja a plutónium dioxid fluorozását, általában erősen korrodáló hidrogén fluoriddal, hogy plutónium fluoridot állítsanak elő, amelyet a továbbiakban nagytisztaságú kalcium fém segítségével redukálnak, hogy plutónium fémet és kalcium fluorid salakot kapjanak. Ennek a folyamatnak a fő lépései: fluorozás (például nemesfémekből készült vagy azzal bevont berendezések felhasználásával), fém redukció (például kerámia olvasztótégelyek segítségével), salakregenerálás, termékkezelés, szellőzés, hulladékkezelés és a folyamat irányítása.

Teljes rendszerek, melyeket speciálisan plutónium fém termelésére terveztek vagy készítettek és amelyeket különösen alkalmassá tettek a kritikus állapot, valamint a sugárhatások elkerülésére és a mérgezési kockázat minimalizálására.

4. Fűtőelemeket gyártó létesítmények

A „fűtőelemeket gyártó létesítmények” olyan berendezéseket foglalnak magukba, amelyek:

a) általában közvetlen kapcsolatba kerülnek a nukleáris anyagok technológiai áramával vagy közvetlenül feldolgozzák, illetve szabályozzák azt;

b) tömören bezárják a nukleáris anyagot a burkolatba.

5. Az urán izotópok szétválasztására szolgáló üzemek és a speciálisan az erre a célra tervezett vagy gyártott berendezések, az analitikai műszerek kivételével.

Az urán izotópok szétválasztására „speciálisan tervezett vagy gyártott berendezések, az analitikai műszerek kivételével” kifejezés az alábbi berendezéseket foglalja magába:

5.1. Gázcentrifugák és gázcentrifugákban való felhasználásra speciálisan tervezett vagy gyártott részegységek és alkatrészek:

Bevezető megjegyzés

A gázcentrifuga általában vékonyfalú, 75-400 mm átmérőjű henger(ek)ből áll, amelyek vákuumkörnyezetben vannak és nagy, 300 m/s vagy nagyobb kerületi sebességgel forognak, függőleges középponti tengelyük körül. A magas kerületi sebesség miatt a forgó részekhez felhasznált szerkezeti anyagoknak nagy szilárdság/sűrűség aránnyal kell rendelkezniük, és a forgórészt és így annak alkatrészeit is a kiegyensúlyozatlanság elkerülésére nagyon kis tűrésekkel kell készíteni. Más centrifugákkal ellentétben, az urándúsításhoz használt centrifuga a rotortérben lévő forgó, korong alakú terelőlapokkal jellemezhető, valamint egy álló csőrendszerrel az UF6 gáz be- és kivezetésére, amelynek legalább 3 különálló csatornája van, amelyek közül kettő a forgórész tengelyétől induló és a forgórész kerülete felé vezető elszívókhoz csatlakozik. A vákuumtérben számos más nem forgó kritikus berendezés is van, amelyek speciális tervezésűek, de nem nehéz legyártani őket és gyártásuk nem igényel különleges anyagokat. Egy centrifuga üzemben nagyon sok ilyen berendezésre van azonban szükség, így a mennyiség fontos információval szolgálhat a végfelhasználásról.

5.1.1. Forgórész alkatrészek

(a) Teljes forgórészek:

Vékonyfalú hengerek vagy több összekapcsolt vékonyfalú henger, amelyek e fejezet Magyarázó megjegyzésében leírt nagy szilárdság/sűrűség arányú anyagok közül egynek vagy többnek a felhasználásával készültek. Az összekapcsolt hengereket az 5.1.1.(c) pont szerinti rugalmas gyűrűk vagy harmonikák fogják össze. A forgórész az 5.1.1.(d) és 5.1.1.(e) szerinti belső terelőlap(ok)kal és fedelekkel van felszerelve összeszerelt állapotában. A teljes berendezést azonban csak részben összeszerelt állapotban szállíthatják.

(b) Rotorcső hengerek:

Speciálisan tervezett vagy gyártott vékonyfalú hengerek, melyek vastagsága 12 mm vagy kevesebb, átmérőjük 75 mm és 400 mm között van, és amelyek e fejezet Magyarázó megjegyzésében leírt nagy szilárdság/sűrűség arányú anyagok közül egynek vagy többnek a felhasználásával készültek.

(c) Gyűrűk vagy harmonikák:

Speciálisan a rotorcső helyi megtámasztására vagy több rotorcső összekapcsolására tervezett vagy gyártott alkatrészek. A harmonika egy rövid, 3 mm vagy kisebb falvastagságú, 75-400 mm átmérőjű csavart henger, amely e fejezet Magyarázó megjegyzésében leírt nagy szilárdság/sűrűség arányú anyagok közül egynek vagy többnek a felhasználásával készült.

(d) Terelőlapok:

Tárcsa alakú, 75-400 mm átmérőjű alkatrészek, amelyeket a centrifuga rotorcsövének belsejében történő felszerelésre speciálisan terveztek vagy gyártottak a bevezető kamrának a fő leválasztó kamrától történő elválasztására, valamint néhány esetben a rotorcső fő leválasztó kamrájában az UF6 gáz cirkulációjának segítésére és amelyek e fejezet Magyarázó megjegyzésében leírt nagy szilárdság/sűrűség arányú anyagok közül egynek vagy többnek a felhasználásával készültek.

(e) Fedelek és alsó zárólapok:

Tárcsa alakú, 75-400 mm átmérőjű alkatrészek, amelyeket speciálisan úgy terveztek vagy gyártottak, hogy az UF6 gáznak a rotorcsövön belül tartására a rotorcső végeihez illeszkedjenek, és néhány esetben megtámasszák, megtartsák, vagy beépített elemként magukba foglalják a felső (fedél) csapágy egy elemét, vagy hordozzák a motor forgó elemeit és az alsó (fenék) csapágyat, és amelyek e fejezet Magyarázó megjegyzésében leírt nagy szilárdság/sűrűség arányú anyagok közül egynek vagy többnek a felhasználásával készültek.

Magyarázó megjegyzés

A centrifuga forgó részeihez használt anyagok a következők:

a) 2,05x109 N/m2 vagy nagyobb szakítószilárdságú maraging acél;

b) 0,46x109 N/m2 vagy nagyobb szakítószilárdságú alumíniumötvözetek; vagy

c) Kompozit szerkezetekben használható, 12.3x106 m vagy nagyobb fajlagos modulusú és 0.3x106 m vagy nagyobb fajlagos szakítószilárdságú szálas anyagok, (a „fajlagos modulus” a Young-modulus N/m2-ben kifejezett értéke osztva a fajsúly N/m3-ben kifejezett értékével; a fajlagos szakítószilárdság a szakítószilárdság N/m2-ben kifejezett értéke osztva a fajsúly N/m3-ben kifejezett értékével).

5.1.2. Állórész alkatrészek

(a) Mágneses felfüggesztésű csapágyak:

Speciálisan erre a célra tervezett vagy készített mágneses felfüggesztésű csapágyak, melyek csillapító közeget tartalmazó házban felfüggesztett gyűrűs mágnesből állnak. A ház az UF6 korróziós hatásának ellenálló anyagból (lásd az 5.2. ponthoz tartozó Magyarázó megjegyzést) készül. A mágnes a rotornak az e fejezet 5.1.1. (e) pontjában leírt fedelén lévő póluselemhez vagy másik mágneshez csatlakozik. A mágnes lehet gyűrű alakú, ahol a külső és a belső átmérő viszonya egyenlő vagy kisebb, mint 1,6:1. A mágnes olyan formában lehet, hogy kiindulási permeabilitása 0,15 H/m vagy több, vagy a remanenciája 98,5% vagy több, illetve a mágneses tér energiasűrűsége nagyobb, mint 80 kJ/m3. A szokásos anyagtulajdonságokon kívül az is előfeltétel, hogy a mágneses tengelyek csak nagyon kis tűréshatáron belül (< 0,1 mm) térhetnek el a geometriai tengelyektől vagy a mágnes anyagának homogenitása szükséges.

(b) Csapágyak/Csillapítók:

Speciálisan erre a célra tervezett vagy készült csapágyak, amelyek csillapítóra szerelt forgócsapos csapágycsészéből álló egységet tartalmaznak. A forgócsap egy keményített acéltengely, az egyik végén egy félgömbbel, a másik végén pedig rögzítési lehetőséggel az 5.1.1.(e) pont szerinti alsó zárólaphoz. A tengelyhez hidrodinamikus csapágy is kapcsolódhat. A csésze tabletta alakú, az egyik oldalán félgömb alakú bemélyedéssel. Ezeket az alkatrészeket gyakran a csillapítótól külön szállítják.

(c) Molekuláris szivattyúk:

Speciálisan tervezett vagy gyártott hengerek belsőleg megmunkált vagy extrudált spirál hornyokkal és belsőleg megmunkált furatokkal. Jellemző méreteik a következők: a belső átmérő 75 mm és 400 mm között van, a falvastagság 10 mm vagy nagyobb, a hossz pedig egyenlő vagy nagyobb az átmérőnél. A hornyok jellemzően négyszögletű keresztmetszetűek és 2 mm vagy nagyobb mélységűek.

(d) Motor állórészek:

Speciálisan tervezett vagy gyártott gyűrű alakú motor állórészek többfázisú AC hiszterézis (vagy mágneses ellenállású) motorokhoz, szinkron működésre vákuumban, 600-2000 Hz frekvenciatartományban, 50-1000 volt/amper teljesítménytartományban. Az állórészek kisveszteségű rétegelt vasmagokon lévő többfázisú tekercselésekből állnak, ahol a vasmag rétegeinek vastagsága jellemzően 2,0 mm vagy kevesebb.

(e) Centrifuga házak:

Speciálisan a gázcentrifugák rotorcső rendszereinek befogadására tervezett vagy készített alkatrészek. A ház egy maximum 30 mm-es falvastagságú merev hengerből áll, precíziós megmunkálású véglapokkal a csapágyak elhelyezésére, egy vagy több karimával a beszereléshez. A megmunkált végek párhuzamosak egymással és a henger hossztengelyére 0,05°-kal vagy annál nagyobb pontossággal merőlegesek. A ház méhsejt elrendezésű is lehet, hogy több rotorcső férjen el benne. A házak az UF6 okozta korróziónak ellenálló anyagból készülnek vagy azzal vannak burkolva.

(f) Szívótorkok:

A rotorcsőből az UF6-ot a Pitot-cső elv (a rotorcsőben lévő kerület menti gázáramlással szemben álló nyílás, például egy radiálisan elhelyezett meghajlított csődarab) alapján eltávolító speciálisan tervezett vagy gyártott csövek, amelyek belső átmérője maximum 12 mm és csatlakoztathatók egy központi gázeltávolító rendszerhez. A csövek az UF6 okozta korróziónak ellenálló anyagból készülnek vagy azzal vannak burkolva.

5.2. Speciálisan tervezett vagy gyártott segédrendszerek, berendezések és alkatrészek gázcentrifugás dúsító létesítményekhez

Bevezető megjegyzés

A gázcentrifugás dúsító üzem segédrendszerei, berendezései és alkatrészei az üzemnek azon rendszerei, amelyek az UF6 centrifugákba történő bevezetésére, a fokozatosan egyre nagyobb dúsítás elérése érdekében, a különálló centrifugák kaszkádokká (fokozatokká) való összekötésére és a végtermék és a dúsítási maradék UF6-nak a centrifugákból történő kivonására szolgálnak. Ide tartoznak továbbá a centrifugák meghajtására és az üzem irányítására szolgáló berendezések is.

Az UF6-ot általában fűtött autoklávokban szilárd halmazállapotból gőzölögtetik el és gáz állapotban vezetik a centrifugákhoz a kaszkádok gyűjtő csővezetékein keresztül. A centrifugáktól áramló végtermék és dúsítási maradék UF6 gázáram szintén a kaszkádok gyűjtőcső rendszerén keresztül a [203 K (-70 °C-on üzemelő)] hidegcsapdákhoz kerül, ahol a megfelelő szállítókonténerbe vagy tárolóba való töltés előtt kondenzálódik. Mivel egy üzem sok ezer kaszkádba rendezett centrifugából áll, a kaszkád csőgyűjtő rendszer sok kilométernyi hosszúságú, amelyben ezernyi hegesztési varrat van, rengeteg ismétlődő formával. A berendezések, az alkatrészek és a csőrendszerek nagyon szigorú vákuumtechnikai és tisztasági előírásoknak megfelelően készülnek.

5.2.1. Táprendszerek/a végterméket és a dúsítási maradékot eltávolító rendszerek

Speciálisan tervezett vagy gyártott technológiai rendszerek, beleértve:

Tápláló-autoklávok (vagy állomások), amelyek 100 kPa nyomásig 1 kg/h vagy nagyobb teljesítménnyel biztosítják az UF6 gázt a centrifugasor (kaszkád) számára;

Deszublimátorok (vagy hidegcsapdák), amelyek segítségével az UF6 gázt maximum 3 kPa nyomáson el lehet távolítani a centrifuga kaszkádból. A deszublimátorokat -70 °C-ra lehet hűteni és 70 °C-ra lehet melegíteni;

Végtermék és dúsítási maradék állomások az UF6 felfogására és konténerbe töltésére.

Ez a rendszer, a berendezések és csővezetékek az UF6 okozta korróziónak ellenálló anyagokból (lásd e fejezet Magyarázó megjegyzését) készülnek vagy azzal vannak bélelve és magas szintű vákuumtechnikai és tisztasági követelmények betartásával gyártják őket.

5.2.2. A gépek gyűjtőcső rendszere

Speciálisan tervezett, illetve gyártott csőrendszerek és gyűjtőrendszerek az UF6 vezetésére a centrifuga kaszkádokban. A csőhálózat általában ún. hármas gyűjtőrendszerből áll; minden centrifuga valamennyi gyűjtőrendszerrel össze van kötve. Az ilyen elrendezésben nagyfokú ismétlődés van. A rendszerek teljesen UF6-nak ellenálló anyagból (lásd e fejezet Magyarázó megjegyzését) készülnek és a gyártás során szigorú vákuumtechnikai és tisztasági követelményeket kell betartani.

5.2.3. UF6 tömegspektrométerek/ionforrások

Speciálisan tervezett vagy gyártott mágneses vagy kvadrupól tömegspektrométerek, amelyek alkalmasak az UF6 gázáramából üzem közben mintát venni a betáplált anyagból, a termékből vagy a maradékból, és melyek rendelkeznek az összes alábbi jellemzővel:

1. Egységnyi tömegfelbontás a 320 atomi tömegegységnél nagyobb tömegre;

2. Az ionforrások króm-nikkelből, vagy monelből készültek vagy azzal béleltek, vagy nikkel bevonatúak;

3. Elektronbombázásos ionforrások;

4. Izotópanalízisre alkalmas gyűjtőrendszerük van.

5.2.4. Frekvenciaváltók

Speciálisan az 5.1.2.(d) pontban meghatározott motor állórészekhez tervezett vagy kialakított frekvenciaváltók (konverterek vagy inverterek), amelyek valamennyi alábbi jellemzővel rendelkeznek, valamint ezen frekvenciaváltók elemei, alkarészei és alrendszerei:

1. 600 Hz-2 000 Hz közötti többfázisú kimenet;

2. Nagy stabilitás (a frekvenciatartás jobb, mint 0,1%);

3. Kis harmonikus torzítás (kisebb, mint 2%); és

4. A hatásfok nagyobb, mint 80%.

Magyarázó megjegyzés

A fenti tételek vagy közvetlen kapcsolatba kerülnek az UF6 gázárammal vagy közvetlenül vezérlik a centrifugákat és a gáznak a centrifugáról - centrifugára és kaszkádról - kaszkádra történő átáramlását.

Az UF6 okozta korróziónak ellenálló anyagok közé tartoznak a rozsdamentes acél, az alumínium, az alumínium ötvözetek, a nikkel vagy a minimum 60% nikkelt tartalmazó ötvözetek.

5.3. Speciálisan tervezett vagy gyártott részegységek és alkatrészek a gázdiffúziós dúsítási eljárásban való felhasználásra

Bevezető megjegyzés

Az urán izotópok szétválasztását szolgáló gázdiffúziós dúsítási eljárásban a főbb technológiai berendezések a speciális porózus gázdiffúziós válaszfal, a hőcserélő (az összenyomás által felmelegedő) gáz hűtésére, a tömítő és szabályozó szelepek és csővezetékek. Mivel a gázdiffúziós technológia UF6-ot használ, minden berendezést, csővezetéket és műszert (amely érintkezésbe lép a gázzal) olyan anyagból kell készíteni, amely stabil marad az UF6-tal érintkezve. Egy gázdiffúziós üzemhez nagyon sok ilyen berendezésre van szükség, így a mennyiség fontos információval szolgálhat a végfelhasználásról.

5.3.1. Gázdiffúziós válaszfalak

(a) Speciálisan tervezett vagy készített vékony, porózus szűrők 100-1000 Ĺ pórusmérettel, 5 mm vagy kisebb vastagsággal és csőformák esetén 25 mm vagy kisebb átmérővel, amelyek az UF6 okozta korróziónak ellenálló fémből, polimer vagy kerámiaanyagokból készültek, és

(b) vegyületek és porok, amelyeket speciálisan ilyen szűrők gyártására készítettek. Ezek közé a vegyületek és porok közé tartoznak a nikkel vagy a legalább 60% nikkelt tartalmazó ötvözet, az alumíniumoxid és az UF6 okozta korróziónak ellenálló, teljesen fluorizált szénhidrogén polimerek, melyek tisztasága legalább 99,9%-os, a részecskék mérete max. 10 ťm és a részecskék mérete nagymértékben azonos, valamint speciálisan a gázdiffúziós válaszfalak előállítására készültek.

5.3.2. Diffúzor házak

Az UF6 okozta korróziónak ellenálló anyagból készült, vagy azzal bélelt, a gázdiffúziós válaszfalak befogadására szolgáló speciálisan tervezett vagy készített hermetikusan tömített hengeres edények, melyek átmérője nagyobb, mint 300 mm, hossza nagyobb, mint 900 mm; vagy négyszögletes edények ehhez hasonló méretekkel, amelyeknek egy bemeneti és két kimeneti csatlakozása van, amelyek mindegyikének nagyobb az átmérője, mint 50 mm, és amelyek függőlegesen és vízszintesen is beépíthetők.

5.3.3. Kompresszorok és gázfúvók

Speciálisan tervezett vagy gyártott 1 m3/perc vagy ennél nagyobb térfogatáramú és néhány száz kPa kimeneti nyomású axiális, centrifugál vagy kiszorításos elven működő kompresszorok vagy gázfúvók, melyeket UF6 környezetben hosszabb ideig történő üzemre terveztek megfelelő teljesítményű elektromos motorral vagy anélkül, beleértve az ilyen kompresszorok és gázfúvók külön részrendszereit is. Ezeknek a kompresszoroknak és gázfúvóknak a nyomásviszonya általában 2:1 és 6:1 között van és az UF6 okozta korróziónak ellenálló anyagból készültek vagy azzal vannak bélelve.

5.3.4. Forgó tengelyek tömítései

Speciálisan tervezett vagy készített vákuumtömítések, be- és kilépő tömítéscsatlakozásokkal a kompresszorok vagy gázfúvók forgórészeit a meghajtó motorral összekötő tengelyre, amelyeknek megbízhatóan el kell tömíteniük a kompresszor vagy gázfúvó UF6-tal töltött belső terét a környező levegő beszivárgásától. Az ilyen tömítéseket általában úgy tervezték, hogy a kitöltő semleges gáz megengedett szivárgása kisebb legyen, mint 1000 cm3/perc.

5.3.5. Hőcserélők UF6 hűtésére

Speciálisan tervezett vagy gyártott hőcserélők, amelyek az UF6 okozta korróziónak ellenálló anyagból (kivéve a rozsdamentes acélt) vagy rézből vagy e fémek bármilyen kombinációjából készültek vagy ezekkel az anyagokkal vannak bélelve, és amelyeknél a szivárgási nyomásváltozási sebesség 100 kPa nyomáskülönbség mellett kisebb, mint 10 Pascal óránként.

5.4. Speciálisan tervezett vagy gyártott segédrendszerek, berendezések és alkatrészek gázdiffúziós dúsítási eljárásban való felhasználásra

Bevezető megjegyzés

A gázdiffúziós dúsító üzem segédrendszerei, berendezései és alkatrészei az üzemnek azon rendszerei, amelyek az UF6 gázdiffúziós berendezésbe történő bevezetésére, a fokozatosan egyre nagyobb dúsítás elérése érdekében, a különálló gázdiffúziós berendezések kaszkádokká (fokozatokká) való összekötésére és a végtermék és a dúsítási maradék UF6-nak a gázdiffúziós berendezésekből történő kivonására szolgálnak. A diffúziós kaszkádok nagy tehetetlenségi jellemzői miatt a működésük megszakítása, különösen a leállításuk súlyos következményekkel jár. Ezért a vákuum pontos és folyamatos fenntartása az összes technológiai rendszerben az üzemzavarok elleni automatikus védelem és a gázáram precíz automatikus szabályozása a gázdiffúziós üzem esetén nagyon fontos. Emiatt az üzemet nagyon sok speciális mérő, szabályzó és irányító rendszerrel kell felszerelni.

Az UF6-ot általában autoklávokba helyezett hengerekből párologtatják el és gáz halmazállapotban, a kaszkádok gyűjtőcső rendszerén keresztül vezetik el a kaszkádok bevezető pontjaihoz. A kilépési pontoktól a végtermék és a dúsítási maradék UF6 gázáramot a kaszkádok gyűjtő csőrendszerén keresztül vagy hidegcsapdákhoz vagy kompresszor állomásokhoz vezetik, ahol az UF6 gázt cseppfolyósítják a megfelelő szállító vagy tároló konténerbe való töltés előtt. Mivel a gázdiffúziós dúsító üzem sok ezer kaszkádokba rendezett gázdiffúziós berendezésből áll, sok kilométernyi hosszúságú a kaszkád gyűjtőcső rendszer, amelyben ezernyi hegesztési varrat van, nagy mennyiségű ismétlődő formával. A berendezések, az alkatrészek és a csőrendszerek nagyon szigorú vákuumtechnikai és tisztasági előírásoknak megfelelően készülnek.

5.4.1. Táprendszerek/a végtermék és a dúsítási maradék eltávolítására szolgáló rendszerek

Speciálisan tervezett vagy gyártott technológiai rendszerek, melyek képesek 300 kPa vagy annál kisebb nyomáson működni, beleértve az alábbiakat:

Tápláló-autoklávok (vagy rendszerek), amelyek biztosítják az UF6 gázt a gázdiffúziós sor (kaszkád) számára;

Deszublimátorok (vagy hidegcsapdák), amelyek segítségével az UF6 gázt el lehet távolítani a diffúziós kaszkádból;

Cseppfolyósító állomások, ahol a kaszkádból kikerülő UF6 gázt komprimálják és lehűtik folyékony halmazállapotúra;

Végtermék és dúsítási maradék állomások az UF6 felfogására és konténerbe töltésére.

5.4.2. Gyűjtőcső rendszerek

Speciálisan tervezett, illetve gyártott csőrendszerek és gyűjtőrendszerek az UF6 vezetésére a gázdiffúziós kaszkádokon belül. A csőhálózat általában ún. kettős gyűjtőrendszerből áll; minden cella minden gyűjtőrendszerrel össze van kötve.

5.4.3. Vákuumrendszerek

(a) Speciálisan tervezett vagy készített nagy vákuum elosztótartályok, gyűjtőcsövek és legalább 5 m3/perc szívási teljesítménnyel rendelkező vákuumszivattyúk;

(b) Speciálisan UF6 tartalmú környezetre tervezett vákuumszivattyúk, amelyek alumíniumból, nikkelből vagy 60%-nál több nikkelt tartalmazó ötvözetből készülnek vagy ilyen anyaggal vannak bevonva. Ezek a szivattyúk működhetnek forgó vagy kiszorításos elven és rendelkezhetnek fluorkarbonból készült vagy feltölthető tömítésekkel és különleges munkaközeggel.

5.4.4. Speciális záró- és vezérlő szelepek

Speciálisan tervezett vagy gyártott az UF6 okozta korróziónak ellenálló anyagokból készült kézi- vagy automatikus záró- és vezérlő harmonika szelepek, melyek átmérője 40 és 1500 mm között van, gázdiffúziós dúsító létesítmények fő- és kiegészítő rendszereiben való alkalmazásra.

5.4.5. UF6 tömegspektrométerek/ionforrások

Speciálisan tervezett vagy gyártott mágneses vagy kvadrupól tömegspektrométerek, amelyek alkalmasak az UF6 gázáramából üzem közben mintát venni a betáplált anyagból, a termékből és a maradékból, és melyek rendelkeznek az összes alábbi jellemzővel:

1. Egységnyi tömegfelbontás a 320 atomi tömegegységnél nagyobb tömegre;

2. Az ionforrások króm-nikkelből vagy monelből készültek vagy azzal béleltek, vagy nikkel bevonatúak;

3. Elektronbombázásos ionforrások;

4. Izotópanalízisre alkalmas gyűjtőrendszerük van.

Magyarázó megjegyzés

A fent felsorolt tételek közvetlen kapcsolatba kerülnek az UF6 gázzal vagy közvetlenül irányítják annak a kaszkádon belüli áramát. Minden felület, amely közvetlen kapcsolatba kerül a gázzal, teljes egészében az UF6 okozta korróziónak ellenálló anyagból készül vagy azzal van bevonva. A gázdiffúziós tételekkel foglalkozó fejezetek alkalmazásában az UF6 okozta korróziónak ellenálló anyagok közé tartozik: rozsdamentes acél, alumínium, alumíniumötvözetek, alumínium-oxid, nikkel vagy legalább 60% nikkelt tartalmazó ötvözetek, UF6 okozta korróziónak ellenálló teljesen fluorozott hidrokarbon polimerek.

5.5. Speciálisan tervezett vagy gyártott rendszerek, berendezések és alkatrészek az aerodinamikai dúsító létesítményekben való felhasználásra

Bevezető megjegyzés

Az aerodinamikai dúsítási folyamatokban a gáz halmazállapotú UF6 és egy könnyű gáz (hidrogén vagy hélium) keverékét komprimálják és átvezetik a szétválasztó elemeken, ahol az izotópszétválasztás egy görbült fal által keltett nagy centrifugális erők hatására valósul meg. Két ilyen típusú eljárást fejlesztettek ki sikeresen: a szétválasztó fúvókás eljárást és az örvénycsöves (vortex csöves) eljárást. Mindkét eljárásban a szétválasztó fokozat fő elemei közé tartoznak a speciális szétválasztó elemeket (fúvókákat vagy örvény csöveket) tartalmazó hengeres tartályok, gázkompresszorok és a komprimáláskor keletkező hő elvonására szolgáló hőcserélők. Az aerodinamikus üzemeknek számos ilyen fokozatra van szüksége, így a mennyiségek fontos jelzéssel szolgálhatnak a végfelhasználással kapcsolatban. Mivel az aerodinamikai eljárás UF6-ot használ, ezért minden berendezésnek, csővezetéknek és műszerfelületnek (amely kapcsolatba kerül a gázzal) olyan anyagból kell készülnie, amely az UF6-tal érintkezve stabil marad.

Magyarázó megjegyzés

Az ebben a fejezetben felsorolt tételek vagy közvetlen kapcsolatba kerülnek az UF6 gázzal vagy közvetlenül irányítják a kaszkádon belül a gázáramot. Minden felület, amely kapcsolatba kerül a gázzal, teljes egészében UF6 okozta korróziónak ellenálló anyagból készül vagy azzal van bevonva. Az aerodinamikai dúsítás tételeivel foglalkozó fejezet alkalmazásában az UF6 okozta korróziónak ellenálló anyagok közé tartoznak a réz, a rozsdamentes acél, az alumínium, az alumíniumötvözetek, a nikkel vagy a legalább 60% nikkelt tartalmazó nikkelötvözetek és UF6 okozta korróziónak ellenálló teljesen fluorozott szénhidrogén polimerek.

5.5.1. Szétválasztó fúvókák

Speciálisan tervezett vagy gyártott szétválasztó fúvókák és a hozzájuk tartozó berendezések.

A szétválasztó fúvókák az UF6 okozta korróziónak ellenálló anyagból készült 1 mm-nél kisebb (jellemzően 0,1 és 0,05 mm közötti) görbületi sugarú hornyolt, hajlított csatornák, amelyekben pengeél választja szét két áramra a fúvókán áthaladó gázt.

5.5.2. Vortex csövek

Speciálisan tervezett vagy gyártott vortex csövek és a hozzájuk tartozó berendezések. A vortex csövek hengeres vagy kúpos kiképzésűek, az UF6 okozta korróziónak ellenálló anyagból készültek vagy azzal vannak bélelve, átmérőjük 0,5 cm és 4 cm közötti, hossz:átmérő arányuk 20:1 vagy kisebb és egy vagy több érintő irányú bemenetük van. A csövek egyik vagy mindkét végét felszerelhetik fúvóka típusú toldalékokkal.

Magyarázó megjegyzés

A kiindulási gáz érintő irányban az egyik végén, vagy örvénylapokon keresztül, vagy a cső kerülete mentén lévő több érintő irányú nyíláson át lép be az örvénycsőbe.

5.5.3. Kompresszorok és gázfúvók

Speciálisan tervezett vagy gyártott, UF6/vivőgáz (hidrogén vagy hélium) keverék esetén 2 m3/perc vagy ennél nagyobb szívóteljesítményű axiális, centrifugális vagy kiszorításos elven működő kompresszorok vagy gázfúvók, melyek az UF6 okozta korróziónak ellenálló anyagokból készültek vagy ilyennel vannak bélelve.

Magyarázó megjegyzés

Ezek a kompresszorok és gázfúvók jellemzően 1,2:1 és 6:1 közötti nyomásviszonnyal rendelkeznek.

5.5.4. Forgó tengelyek tömítései

Forgó tengelyek speciálisan tervezett vagy készített tömítései, be- és kilépő tömítéscsatlakozásokkal a kompresszorok vagy gázfúvók forgórészeit a meghajtómotor forgórészével összekötő tengely tömítésére, amelynek megbízhatóan el kell tömítenie a kompresszor vagy gázfúvó UF6/vivőgáz keverékkel töltött belső terét, hogy megakadályozzák a környező levegő beszivárgását, illetve a gáz kiszivárgását.

5.5.5. Hőcserélők a gáz hűtéséhez

Speciálisan tervezett vagy gyártott hőcserélők, melyek az UF6 okozta korróziónak ellenálló anyagokból készülnek, vagy azzal vannak bélelve.

5.5.6. Szétválasztó egységek házai

Szétválasztó egységek speciálisan tervezett vagy gyártott házai vortex csövek vagy szétválasztó fúvókák befogadására, melyek az UF6 okozta korróziónak ellenálló anyagokból készültek, vagy azzal vannak bélelve.

Magyarázó megjegyzés

A házak lehetnek 300 mm-nél nagyobb átmérőjű és 900 mm-nél hosszabb hengeres edények vagy hasonló méretű négyszögletes edények, amelyek vízszintesen vagy függőlegesen is beépíthetők.

5.5.7. Táprendszerek/a végtermék és a dúsítási maradék eltávolítására szolgáló rendszerek

A dúsító létesítmények speciálisan tervezett vagy gyártott feldolgozó rendszerei vagy berendezései, melyek az UF6 okozta korróziónak ellenálló anyagból készültek vagy azzal vannak bélelve, beleértve az alábbiakat:

(a) Tápautoklávok, kemencék vagy rendszerek, amelyek biztosítják az UF6 gáz bevezetését a dúsítási folyamatba;

(b) Deszublimátorok (vagy hidegcsapdák), amelyek segítségével az UF6 gázt eltávolítják a dúsítási folyamatból későbbi, felmelegítés utáni elszállításhoz;

(c) Cseppfolyósító és szilárdító állomások, melyek segítségével az UF6-ot komprimálással és cseppfolyós vagy szilárd halmazállapotúvá alakítással kívonják a dúsítási folyamatból;

(d) Végtermék és dúsítási maradék állomások az UF6 konténerekbe töltésére.

5.5.8. Gyűjtőcső rendszerek

Speciálisan tervezett vagy gyártott gyűjtőcsőrendszerek, melyek az UF6 okozta korróziónak ellenálló anyagokból készültek vagy azzal vannak bélelve, az UF6-nak az aerodinamikai kaszkádokban történő vezetésére. A csőhálózat általában ún. kettős gyűjtőrendszerből áll; minden fokozat vagy fokozatcsoport valamennyi gyűjtőcsővel össze van kötve.

5.5.9. Vákuumrendszerek és szivattyúk

a) Speciálisan tervezett vagy gyártott vákuumrendszerek legalább 5 m3/perc szívási teljesítménnyel, melyek vákuumelosztókból, vákuum gyűjtőcsövekből és vákuumszivattyúkból állnak és amelyeket UF6 tartalmú környezetben való üzemre terveztek;

b) Speciálisan tervezett vagy gyártott vákuumszivattyúk, amelyek az UF6 okozta korróziónak ellenálló anyagokból készültek vagy ilyen anyaggal vannak bevonva. Ezek a szivattyúk fluor-karbonból készült tömítésekkel és különleges munkaközeggel rendelkezhetnek.

5.5.10. Speciális záró- és vezérlő szelepek

Speciálisan tervezett vagy gyártott az UF6 okozta korróziónak ellenálló anyagokból készült vagy ilyen anyagokkal bevont kézi- vagy automatikus záró- és vezérlő harmonika szelepek, melyek átmérője 40 és 1500 mm között van, és amelyek aerodinamikai dúsító üzemek fő- és kiegészítő rendszereiben való alkalmazásra készültek.

5.5.11. UF6 tömegspektrométerek/ionforrások

Speciálisan tervezett vagy gyártott mágneses vagy kvadrupól tömegspektrométerek, amelyek alkalmasak az UF6 gázáramából üzem közben mintát venni a betáplált anyagból, a termékből és a maradékból, és melyek rendelkeznek az összes alábbi jellemzővel:

1. Egységnyi tömegfelbontás a 320 atomi tömegegységnél nagyobb tömegre;

2. Az ionforrások króm-nikkelből, vagy monelből készültek vagy azzal béleltek, vagy nikkel bevonatúak;

3. Elektronbombázásos ionforrások;

4. Izotópanalízisre alkalmas gyűjtőrendszerük van.

5.5.12. UF6/vivőgáz szétválasztó rendszerek

Speciálisan tervezett vagy gyártott rendszerek az UF6-nak a vivőgáztól (hidrogén vagy hélium) történő szétválasztásához.

Magyarázó megjegyzés

Ezeket a rendszereket a vivőgázban lévő UF6 tartalomnak 1 ppm vagy kisebb mennyiségűre való csökkentésére tervezték és a következő berendezéseket tartalmazhatják:

(a) Kriogén hőcserélők és krio-szeparátorok, amelyek -120 °C vagy annál alacsonyabb hőmérséklet előállítására képesek, vagy

(b) Kriogén hűtőegységek, amelyek -120 °C vagy annál alacsonyabb hőmérséklet előállítására képesek, vagy

(c) Szétválasztó fúvókás vagy örvénycsöves egységek az UF6-nak a vivőgázról történő szétválasztásához, vagy

(d) UF6 hidegcsapdák, amelyek -20 °C vagy annál alacsonyabb hőmérséklet előállítására képesek.

5.6. Speciálisan tervezett vagy gyártott rendszerek, berendezések és alkatrészek a kémiai kicserélődéses vagy ioncserés dúsító létesítményekben való felhasználásra

Bevezető megjegyzés

Az urán izotópjai közötti kis súlykülönbség csekély kémiai reakció-egyensúlyi változásokat okoz, aminek alapján szét lehet választani az izotópokat. Két hatékony módszert fejlesztettek ki: a folyadék-folyadék kémiai kicserélődéses és a szilárdfolyadék ioncserés módszert. A folyadék-folyadék kémiai kicserélődéses módszer során a nem keveredő (vizes és szerves) folyadékfázisokat ellenáramban érintkeztetik a több ezernyi szétválasztási fokozat kaszkád hatásának elérésére. A vizes fázis urán-kloridot tartalmaz sósavas oldatban; a szerves fázis szerves oldószerben feloldott urán-kloridot tartalmazó extraháló szerből áll. A szétválasztó kaszkádban alkalmazott kontaktorok: folyadék-folyadék cserélő tornyok (impulzusüzemű tornyok szitalemezekkel) vagy folyadék centrifugális kontaktorok. A kémiai átalakulásokra (oxidáció és redukció) a szétválasztó kaszkád mindkét oldalán szükség van, hogy a visszaáramlási követelményeket mindkét oldalon biztosítsák. Lényeges tervezési szempont, hogy megakadályozzák az anyagáramok bizonyos fémionokkal történő szennyeződését. Ezért műanyag, műanyag bevonatú (köztük fluorkarbon bevonatú) és/vagy üvegbevonatú tornyokat és csővezetékeket használnak.

A szilárd-folyadék ioncserés eljárásban a dúsítás egy speciális, nagyon gyors reagálású ioncserélő gyantán vagy adszorberen megvalósuló urán adszorpcióval/deszorpcióval történik. A sósavban feloldott uránt és más vegyületeket adszorbens anyagoszlopokat tartalmazó dúsító oszlopokon vezetik keresztül. A folyamatos működéshez szükség van egy visszaáramoltató rendszerre, amely felszabadítja az uránt az adszorbensből és visszajuttatja a folyadékáramba, és így a végtermék és a dúsítási maradék összegyűjthető. Ezt megfelelő redukáló/oxidáló vegyi anyagokkal végzik, amelyeket külső rendszerekben teljesen regenerálnak és amelyek magukban az izotópszétválasztó tornyokban is részlegesen regenerálhatók. A forró tömény sósavas oldatok jelenléte a folyamatban szükségessé teszi, hogy a berendezések speciális korrózióálló anyagokból készüljenek vagy ilyenekkel legyenek bevonva.

5.6.1. Folyadék-folyadék ioncserélő oszlopok (kémiai kicserélődés)

Speciálisan a kémiai kicserélődéses urán dúsításhoz tervezett vagy gyártott mechanikus meghajtású, ellenáramú folyadék-folyadék cserélő tornyok (azaz impulzus tornyok szitalemezekkel, lengőlemezes tornyok és tornyok belső turbinás keverővel). Ezek a tornyok és belső részeik a tömény sósavas oldatok okozta korróziónak ellenálló megfelelő műanyagokból (mint például fluorkarbon polimerek) vagy üvegből készülnek vagy azzal vannak burkolva. A tornyoknál a tartózkodási időt rövidre tervezték (nem több 30 másodpercnél).

5.6.2. Folyadék-folyadék centrifugális kontaktorok (kémiai kicserélődés)

Speciálisan a kémiai kicserélődéses urán dúsításhoz tervezett vagy gyártott folyadék-folyadék centrifugális kontaktorok. Az ilyen kontaktorok forgás segítségével diszpergálják a szerves és a vizes áramokat, majd a centrifugális erő segítségével választják szét a fázisokat. Ezek a kontaktorok a tömény sósavas oldatok okozta korróziónak ellenálló megfelelő műanyagokból (mint például fluorkarbon polimerek) készülnek vagy azzal vannak bélelve, illetve üvegbevonatúak. A centrifugális kontaktoroknál a tartózkodási időt rövidre tervezték (nem több 30 másodpercnél).

5.6.3. Urán redukciós rendszerek és berendezések (kémiai kicserélődés)

(a) Speciálisan tervezett vagy gyártott elektrokémiai redukciós cellák az urán egyik vegyértékállapotából a másikba történő redukálásához, a kémiai kicserélődéses urándúsítási eljáráshoz. A celláknak a technológiai folyamat oldataival érintkező anyagai ellen kell álljanak a tömény sósavas oldatok okozta korróziónak.

Magyarázó megjegyzés

A cella katódterét úgy kell tervezni, hogy az megakadályozza az urán visszaoxidálódását magasabb vegyértékállapotba. Az urán katódtérben tartására a cella rendelkezhet egy speciális kation cserélő anyagból készült át nem eresztő membránnal. A katód megfelelő szilárd vezetőből, például grafitból készül.

(b) Speciálisan tervezett vagy gyártott rendszerek a kaszkád végtermék oldalán az U4+ szerves áramból való kivonására, a savkoncentráció szabályozására és az elektrokémiai redukciós cellába való táplálására.

Magyarázó megjegyzés

Ezek a rendszerek rendelkeznek oldószerkivonó berendezéssel az U4+-nek a szerves áramból való leválasztására és vizes oldatba vitelére, elpárologtató és/vagy másmilyen berendezéssel az oldat kémhatásának beállítására és szabályozására, valamint szivattyúkkal vagy más szállítóberendezésekkel az elektrokémiai redukciós cellák táplálására. A legfontosabb tervezési cél, hogy elkerüljék a vizes áram bizonyos fémionokkal való szennyeződését. Ezért az áramló anyaggal kapcsolatba kerülő alkatrészeket megfelelő anyagokból vagy megfelelő anyaggal bevonva készítik (például üveg, fluorkarbon polimerek, polifenil-szulfát, poliéter-szulfon és gyanta impregnálású grafit).

5.6.4. Betáplálást előkészítő rendszerek (kémiai kicserélődés)

Speciálisan tervezett vagy gyártott rendszerek nagy tisztaságú urán-klorid tápoldat előállítására a kémiai kicserélődéses uránizotóp szétválasztó üzemekben.

Magyarázó megjegyzés